{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "GHsssBgWM_l0" }, "source": [ "# QLoRA Fine-Tuning; LLaMA 3.1 8B" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "MDyR63OTNUJ6" }, "outputs": [], "source": [ "import sys\n", "print(f\"Python: {sys.version}\")\n", "\n", "import torch\n", "print(f\"PyTorch: {torch.__version__}\")\n", "print(f\"CUDA Available: {torch.cuda.is_available()}\")\n", "print(f\"CUDA Version: {torch.version.cuda}\")\n", "print(f\"GPU: {torch.cuda.get_device_name(0)}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "3_8F5m3xxMtz" }, "outputs": [], "source": [ "!pip install -q --upgrade transformers==4.48.3 accelerate==1.3.0 datasets==3.2.0\n", "!pip install -q --upgrade peft==0.14.0 trl==0.14.0 bitsandbytes==0.46.0\n", "!pip install -q --upgrade matplotlib scipy scikit-learn\n", "!pip install -q --upgrade \"huggingface_hub<1.0,>=0.24.0\"\n", "!pip install -q --upgrade bitsandbytes" ] }, { "cell_type": "markdown", "metadata": { "id": "CpVdMBUVxMtz" }, "source": [ "## Environment Setup" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-yikV8pRBer9" }, "outputs": [], "source": [ "import os\n", "import re\n", "import math\n", "import torch\n", "import torch.nn.functional as F\n", "import matplotlib.pyplot as plt\n", "from tqdm import tqdm\n", "from huggingface_hub import login\n", "from transformers import (\n", " AutoModelForCausalLM,\n", " AutoTokenizer,\n", " BitsAndBytesConfig,\n", " set_seed\n", ")\n", "from datasets import load_dataset\n", "from peft import PeftModel\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "uuTX-xonNeOK" }, "outputs": [], "source": [ "BASE_MODEL = \"meta-llama/Meta-Llama-3.1-8B\"\n", "DATASET_NAME = \"ed-donner/pricer-data\"\n", "FINETUNED_MODEL = \"ed-donner/pricer-2024-09-13_13.04.39\"\n", "REVISION = \"e8d637df551603dc86cd7a1598a8f44af4d7ae36\"\n", "\n", "TOP_K = 3\n", "TEST_SIZE = 250\n", "\n", "GREEN = \"\\033[92m\"\n", "YELLOW = \"\\033[93m\"\n", "RED = \"\\033[91m\"\n", "RESET = \"\\033[0m\"\n", "COLOR_MAP = {\"red\": RED, \"orange\": YELLOW, \"green\": GREEN}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WyFPZeMcM88v" }, "outputs": [], "source": [ "from google.colab import userdata\n", "hf_token = userdata.get('HF_TOKEN')\n", "\n", "login(hf_token, add_to_git_credential=True)\n", "print(\"Successfully authenticated with HuggingFace\")" ] }, { "cell_type": "markdown", "metadata": { "id": "qDqXth7MxMt0" }, "source": [ "## Load Data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "cvXVoJH8LS6u" }, "outputs": [], "source": [ "print(f\"Loading dataset: {DATASET_NAME}\")\n", "dataset = load_dataset(DATASET_NAME)\n", "train = dataset['train']\n", "test = dataset['test']\n", "\n", "print(f\"\\nDataset loaded successfully:\")\n", "print(f\" Training examples: {len(train):,}\")\n", "print(f\" Test examples: {len(test):,}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "xb86e__Wc7j_" }, "outputs": [], "source": [ "print(\"Sample test example:\\n\")\n", "sample = test[0]\n", "print(f\"Text: {sample['text'][:200]}...\")\n", "print(f\"\\nGround truth price: ${sample['price']:.2f}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "qJWQ0a3wZ0Bw" }, "source": [ "## Quantization & Model Loading\n", "\n", "(4-bit quantization reduces LLaMA 3.1 8B from ~32GB to ~5-6GB VRAM)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lAUAAcEC6ido" }, "outputs": [], "source": [ "quant_config = BitsAndBytesConfig(\n", " load_in_4bit=True,\n", " bnb_4bit_use_double_quant=True,\n", " bnb_4bit_compute_dtype=torch.bfloat16,\n", " bnb_4bit_quant_type=\"nf4\"\n", ")\n", "\n", "print(\"Using 4-bit NF4 quantization\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "R_O04fKxMMT-" }, "outputs": [], "source": [ "print(f\"Loading base model: {BASE_MODEL}\")\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)\n", "tokenizer.pad_token = tokenizer.eos_token\n", "tokenizer.padding_side = \"right\"\n", "\n", "base_model = AutoModelForCausalLM.from_pretrained(\n", " BASE_MODEL,\n", " quantization_config=quant_config,\n", " device_map=\"auto\",\n", ")\n", "base_model.generation_config.pad_token_id = tokenizer.pad_token_id\n", "\n", "print(f\"Base model loaded - Memory: {base_model.get_memory_footprint() / 1e9:.2f} GB\")" ] }, { "cell_type": "markdown", "metadata": { "id": "m7PHUKDVxMt1" }, "source": [ "## Load PEFT Adapters" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "6_Q1fqluxMt1" }, "outputs": [], "source": [ "print(f\"Loading fine-tuned adapters: {FINETUNED_MODEL}\")\n", "print(f\"Revision: {REVISION}\")\n", "\n", "fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION)\n", "\n", "print(f\"Fine-tuned model ready - Total memory: {fine_tuned_model.get_memory_footprint() / 1e9:.2f} GB\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Qst1LhBVAB04" }, "outputs": [], "source": [ "def extract_price(text):\n", " if \"Price is $\" in text:\n", " content = text.split(\"Price is $\")[1]\n", " content = content.replace(',', '').replace('$', '')\n", " match = re.search(r\"[-+]?\\d*\\.?\\d+\", content)\n", " return float(match.group()) if match else 0.0\n", " return 0.0" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jXFBW_5UeEcp" }, "outputs": [], "source": [ "test_cases = [\n", " \"Price is $24.99\",\n", " \"Price is $1,234.50\",\n", " \"Price is $a fabulous 899.99 or so\"\n", "]\n", "\n", "for test in test_cases:\n", " result = extract_price(test)\n", " print(f\"{test} -> ${result:.2f}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "TTy_WAGexMt2" }, "source": [ "## Prediction Function\n", "\n", "Top-K weighted averaging computes probability-weighted average of top K tokens." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Je5dR8QEAI1d" }, "outputs": [], "source": [ "def advanced_predict(prompt, top_k=TOP_K):\n", " set_seed(42)\n", " inputs = tokenizer.encode(prompt, return_tensors=\"pt\").to(\"cuda\")\n", " attention_mask = torch.ones(inputs.shape, device=\"cuda\")\n", "\n", " with torch.no_grad():\n", " outputs = fine_tuned_model(inputs, attention_mask=attention_mask)\n", " next_token_logits = outputs.logits[:, -1, :].to('cpu')\n", "\n", " next_token_probs = F.softmax(next_token_logits, dim=-1)\n", " top_probs, top_token_ids = next_token_probs.topk(top_k)\n", "\n", " prices, weights = [], []\n", "\n", " for i in range(top_k):\n", " predicted_token = tokenizer.decode(top_token_ids[0][i])\n", " probability = top_probs[0][i]\n", "\n", " try:\n", " price = float(predicted_token)\n", " if price > 0:\n", " prices.append(price)\n", " weights.append(probability)\n", " except ValueError:\n", " continue\n", "\n", " if not prices:\n", " return 0.0\n", "\n", " total_weight = sum(weights)\n", " weighted_avg = sum(p * w / total_weight for p, w in zip(prices, weights))\n", "\n", " return weighted_avg.item()" ] }, { "cell_type": "markdown", "metadata": { "id": "7nI3Ec7exMt2" }, "source": [ "## Evaluation Framework\n", "\n", "Metrics:\n", "- Dollar Error: |prediction - truth|\n", "- RMSLE: Root Mean Squared Log Error (penalizes relative errors)\n", "- Hit Rate: Percentage in green zone (error < $40 OR < 20% of true price)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "30lzJXBH7BcK" }, "outputs": [], "source": [ "class Tester:\n", "\n", " def __init__(self, predictor, data, title=None, size=TEST_SIZE):\n", " self.predictor = predictor\n", " self.data = data\n", " self.title = title or predictor.__name__.replace(\"_\", \" \").title()\n", " self.size = min(size, len(data))\n", " self.guesses = []\n", " self.truths = []\n", " self.errors = []\n", " self.sles = []\n", " self.colors = []\n", "\n", " def color_for(self, error, truth):\n", " if error < 40 or error / truth < 0.2:\n", " return \"green\"\n", " elif error < 80 or error / truth < 0.4:\n", " return \"orange\"\n", " else:\n", " return \"red\"\n", "\n", " def run_datapoint(self, i):\n", " datapoint = self.data[i]\n", " guess = self.predictor(datapoint[\"text\"])\n", " truth = datapoint[\"price\"]\n", " error = abs(guess - truth)\n", "\n", " log_error = math.log(truth + 1) - math.log(guess + 1)\n", " sle = log_error ** 2\n", "\n", " color = self.color_for(error, truth)\n", " title = datapoint[\"text\"].split(\"\\n\\n\")[1][:30] + \"...\"\n", "\n", " self.guesses.append(guess)\n", " self.truths.append(truth)\n", " self.errors.append(error)\n", " self.sles.append(sle)\n", " self.colors.append(color)\n", "\n", " print(f\"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} | Truth: ${truth:,.2f} | Error: ${error:,.2f} | SLE: {sle:,.3f} | {title}{RESET}\")\n", "\n", " def chart(self, title):\n", " plt.figure(figsize=(14, 10))\n", " max_val = max(max(self.truths), max(self.guesses))\n", "\n", " plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=3, alpha=0.7, label='Perfect prediction')\n", " plt.scatter(self.truths, self.guesses, s=20, c=self.colors, alpha=0.6)\n", "\n", " plt.xlabel('Ground Truth Price ($)', fontsize=12)\n", " plt.ylabel('Model Prediction ($)', fontsize=12)\n", " plt.xlim(0, max_val)\n", " plt.ylim(0, max_val)\n", " plt.title(title, fontsize=14, fontweight='bold')\n", " plt.grid(alpha=0.3)\n", " plt.legend()\n", " plt.tight_layout()\n", " plt.show()\n", "\n", " def report(self):\n", " average_error = sum(self.errors) / self.size\n", " rmsle = math.sqrt(sum(self.sles) / self.size)\n", " hits = sum(1 for color in self.colors if color == \"green\")\n", " hit_rate = hits / self.size * 100\n", "\n", " title = f\"{self.title} | Avg Error: ${average_error:,.2f} | RMSLE: {rmsle:.3f} | Hit Rate: {hit_rate:.1f}%\"\n", "\n", " print(f\"\\n{'='*80}\")\n", " print(f\"EVALUATION SUMMARY\")\n", " print(f\"{'='*80}\")\n", " print(f\"Model: {self.title}\")\n", " print(f\"Test Size: {self.size}\")\n", " print(f\"Average Dollar Error: ${average_error:,.2f}\")\n", " print(f\"RMSLE: {rmsle:.4f}\")\n", " print(f\"Hit Rate (Green): {hit_rate:.2f}% ({hits}/{self.size})\")\n", " print(f\"{'='*80}\\n\")\n", "\n", " self.chart(title)\n", "\n", " def run(self):\n", " print(f\"Running evaluation on {self.size} examples...\\n\")\n", " for i in tqdm(range(self.size), desc=\"Evaluating\"):\n", " self.run_datapoint(i)\n", " self.report()\n", "\n", " @classmethod\n", " def test(cls, function, data, **kwargs):\n", " cls(function, data, **kwargs).run()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "krjnRyHO4Fp6" }, "outputs": [], "source": [ "print(f\"Loading dataset: {DATASET_NAME}\")\n", "dataset = load_dataset(DATASET_NAME)\n", "train = dataset['train']\n", "test = dataset['test']\n", "\n", "print(f\"\\nDataset loaded successfully:\")\n", "print(f\" Training examples: {len(train):,}\")\n", "print(f\" Test examples: {len(test):,}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "5JjNwXMDxMt2" }, "source": [ "## Run Evaluation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "W_KcLvyt6kbb" }, "outputs": [], "source": [ "Tester.test(advanced_predict, test, title=\"LLaMA 3.1 8B QLoRA (400K)\")" ] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "T4", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }