{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "GHsssBgWM_l0" }, "source": [ "# Fine-Tuned Product Price Predictor\n", "\n", "Evaluate fine-tuned Llama 3.1 8B model for product price estimation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "MDyR63OTNUJ6" }, "outputs": [], "source": [ "# Install required libraries for model inference\n", "%pip install -q --upgrade torch==2.5.1+cu124 torchvision==0.20.1+cu124 torchaudio==2.5.1+cu124 --index-url https://download.pytorch.org/whl/cu124\n", "%pip install -q --upgrade requests==2.32.3 bitsandbytes==0.46.0 transformers==4.48.3 accelerate==1.3.0 datasets==3.2.0 peft==0.14.0 trl==0.14.0 matplotlib wandb" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-yikV8pRBer9" }, "outputs": [], "source": [ "# Import required libraries\n", "import os\n", "import re\n", "import math\n", "from tqdm import tqdm\n", "from google.colab import userdata\n", "from huggingface_hub import login\n", "import torch\n", "import torch.nn.functional as F\n", "import transformers\n", "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, set_seed\n", "from datasets import load_dataset, Dataset, DatasetDict\n", "from datetime import datetime\n", "from peft import PeftModel\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "uuTX-xonNeOK" }, "outputs": [], "source": [ "# Configuration\n", "BASE_MODEL = \"meta-llama/Meta-Llama-3.1-8B\"\n", "PROJECT_NAME = \"pricer\"\n", "HF_USER = \"ed-donner\" # Change to your HF username\n", "RUN_NAME = \"2024-09-13_13.04.39\"\n", "PROJECT_RUN_NAME = f\"{PROJECT_NAME}-{RUN_NAME}\"\n", "REVISION = \"e8d637df551603dc86cd7a1598a8f44af4d7ae36\"\n", "FINETUNED_MODEL = f\"{HF_USER}/{PROJECT_RUN_NAME}\"\n", "DATASET_NAME = f\"{HF_USER}/pricer-data\"\n", "\n", "# Quantization setting (False = 8-bit = better accuracy, more memory)\n", "QUANT_4_BIT = False # Changed to 8-bit for better accuracy\n", "\n", "%matplotlib inline\n", "\n", "# Color codes for output\n", "GREEN = \"\\033[92m\"\n", "YELLOW = \"\\033[93m\"\n", "RED = \"\\033[91m\"\n", "RESET = \"\\033[0m\"\n", "COLOR_MAP = {\"red\":RED, \"orange\": YELLOW, \"green\": GREEN}" ] }, { "cell_type": "markdown", "metadata": { "id": "8JArT3QAQAjx" }, "source": [ "# Step 1\n", "\n", "### Load dataset and fine-tuned model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WyFPZeMcM88v" }, "outputs": [], "source": [ "# Login to HuggingFace\n", "hf_token = userdata.get('HF_TOKEN')\n", "login(hf_token, add_to_git_credential=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "cvXVoJH8LS6u" }, "outputs": [], "source": [ "# Load product pricing dataset\n", "dataset = load_dataset(DATASET_NAME)\n", "train = dataset['train']\n", "test = dataset['test']\n", "\n", "print(f\"✓ Loaded {len(train)} train and {len(test)} test samples\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "xb86e__Wc7j_" }, "outputs": [], "source": [ "# Verify data structure\n", "test[0]" ] }, { "cell_type": "markdown", "metadata": { "id": "qJWQ0a3wZ0Bw" }, "source": [ "### Load Tokenizer and Model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lAUAAcEC6ido" }, "outputs": [], "source": [ "# Configure quantization for memory efficiency\n", "if QUANT_4_BIT:\n", " quant_config = BitsAndBytesConfig(\n", " load_in_4bit=True,\n", " bnb_4bit_use_double_quant=True,\n", " bnb_4bit_compute_dtype=torch.bfloat16,\n", " bnb_4bit_quant_type=\"nf4\"\n", " )\n", "else:\n", " quant_config = BitsAndBytesConfig(\n", " load_in_8bit=True,\n", " bnb_8bit_compute_dtype=torch.bfloat16\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "R_O04fKxMMT-" }, "outputs": [], "source": [ "# Load tokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)\n", "tokenizer.pad_token = tokenizer.eos_token\n", "tokenizer.padding_side = \"right\"\n", "\n", "# Load base model with quantization\n", "base_model = AutoModelForCausalLM.from_pretrained(\n", " BASE_MODEL,\n", " quantization_config=quant_config,\n", " device_map=\"auto\",\n", ")\n", "base_model.generation_config.pad_token_id = tokenizer.pad_token_id\n", "\n", "# Load fine-tuned weights\n", "if REVISION:\n", " fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION)\n", "else:\n", " fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL)\n", "\n", "print(f\"✓ Model loaded - Memory: {fine_tuned_model.get_memory_footprint() / 1e6:.1f} MB\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "kD-GJtbrdd5t" }, "outputs": [], "source": [ "# Verify model loaded\n", "fine_tuned_model" ] }, { "cell_type": "markdown", "metadata": { "id": "UObo1-RqaNnT" }, "source": [ "# Step 2\n", "\n", "### Model inference and evaluation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Qst1LhBVAB04" }, "outputs": [], "source": [ "# Extract price from model response\n", "def extract_price(s):\n", " if \"Price is $\" in s:\n", " contents = s.split(\"Price is $\")[1]\n", " contents = contents.replace(',','')\n", " match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", contents)\n", " return float(match.group()) if match else 0\n", " return 0" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jXFBW_5UeEcp" }, "outputs": [], "source": [ "# Test extract_price function\n", "extract_price(\"Price is $a fabulous 899.99 or so\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Oj_PzpdFAIMk" }, "outputs": [], "source": [ "# Simple prediction: takes most likely next token\n", "def model_predict(prompt):\n", " set_seed(42)\n", " inputs = tokenizer.encode(prompt, return_tensors=\"pt\").to(\"cuda\")\n", " attention_mask = torch.ones(inputs.shape, device=\"cuda\")\n", " outputs = fine_tuned_model.generate(\n", " inputs,\n", " attention_mask=attention_mask,\n", " max_new_tokens=5, # Increased for flexibility\n", " temperature=0.1, # Low temperature for consistency\n", " num_return_sequences=1\n", " )\n", " response = tokenizer.decode(outputs[0])\n", " return extract_price(response)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Je5dR8QEAI1d" }, "outputs": [], "source": [ "# Improved prediction: weighted average of top K predictions\n", "top_K = 5 # Increased from 3 to 5 for better accuracy\n", "\n", "def improved_model_predict(prompt, device=\"cuda\"):\n", " set_seed(42)\n", " inputs = tokenizer.encode(prompt, return_tensors=\"pt\").to(device)\n", " attention_mask = torch.ones(inputs.shape, device=device)\n", "\n", " with torch.no_grad():\n", " outputs = fine_tuned_model(inputs, attention_mask=attention_mask)\n", " next_token_logits = outputs.logits[:, -1, :].to('cpu')\n", "\n", " next_token_probs = F.softmax(next_token_logits, dim=-1)\n", " top_prob, top_token_id = next_token_probs.topk(top_K)\n", " prices, weights = [], []\n", " for i in range(top_K):\n", " predicted_token = tokenizer.decode(top_token_id[0][i])\n", " probability = top_prob[0][i]\n", " try:\n", " result = float(predicted_token)\n", " except ValueError as e:\n", " result = 0.0\n", " if result > 0:\n", " prices.append(result)\n", " weights.append(probability)\n", " if not prices:\n", " return 0.0, 0.0\n", " total = sum(weights)\n", " weighted_prices = [price * weight / total for price, weight in zip(prices, weights)]\n", " return sum(weighted_prices).item()" ] }, { "cell_type": "markdown", "metadata": { "id": "EpGVJPuC1iho" }, "source": [ "# Step 3\n", "\n", "### Test and evaluate model performance" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "30lzJXBH7BcK" }, "outputs": [], "source": [ "# Evaluation framework\n", "class Tester:\n", " def __init__(self, predictor, data, title=None, size=250):\n", " self.predictor = predictor\n", " self.data = data\n", " self.title = title or predictor.__name__.replace(\"_\", \" \").title()\n", " self.size = size\n", " self.guesses = []\n", " self.truths = []\n", " self.errors = []\n", " self.sles = []\n", " self.colors = []\n", "\n", " def color_for(self, error, truth):\n", " if error<40 or error/truth < 0.2:\n", " return \"green\"\n", " elif error<80 or error/truth < 0.4:\n", " return \"orange\"\n", " else:\n", " return \"red\"\n", "\n", " def run_datapoint(self, i):\n", " datapoint = self.data[i]\n", " guess = self.predictor(datapoint[\"text\"])\n", " truth = datapoint[\"price\"]\n", " error = abs(guess - truth)\n", " log_error = math.log(truth+1) - math.log(guess+1)\n", " sle = log_error ** 2\n", " color = self.color_for(error, truth)\n", " title = datapoint[\"text\"].split(\"\\n\\n\")[1][:20] + \"...\"\n", " self.guesses.append(guess)\n", " self.truths.append(truth)\n", " self.errors.append(error)\n", " self.sles.append(sle)\n", " self.colors.append(color)\n", " print(f\"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} Truth: ${truth:,.2f} Error: ${error:,.2f} SLE: {sle:,.2f} Item: {title}{RESET}\")\n", "\n", " def chart(self, title):\n", " max_error = max(self.errors)\n", " plt.figure(figsize=(12, 8))\n", " max_val = max(max(self.truths), max(self.guesses))\n", " plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=2, alpha=0.6)\n", " plt.scatter(self.truths, self.guesses, s=3, c=self.colors)\n", " plt.xlabel('Ground Truth')\n", " plt.ylabel('Model Estimate')\n", " plt.xlim(0, max_val)\n", " plt.ylim(0, max_val)\n", " plt.title(title)\n", " plt.show()\n", "\n", " def report(self):\n", " average_error = sum(self.errors) / self.size\n", " rmsle = math.sqrt(sum(self.sles) / self.size)\n", " hits = sum(1 for color in self.colors if color==\"green\")\n", " title = f\"{self.title} Error=${average_error:,.2f} RMSLE={rmsle:,.2f} Hits={hits/self.size*100:.1f}%\"\n", " self.chart(title)\n", "\n", " def run(self):\n", " self.error = 0\n", " for i in range(self.size):\n", " self.run_datapoint(i)\n", " self.report()\n", "\n", " @classmethod\n", " def test(cls, function, data):\n", " cls(function, data).run()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "W_KcLvyt6kbb" }, "outputs": [], "source": [ "# Run evaluation on 250 test examples\n", "Tester.test(improved_model_predict, test)" ] }, { "cell_type": "markdown", "metadata": { "id": "nVwiWGVN1ihp" }, "source": [ "### Performance Optimizations Applied\n", "\n", "**Changes for better accuracy:**\n", "- ✅ 8-bit quantization (vs 4-bit) - Better precision\n", "- ✅ top_K = 5 (vs 3) - More predictions in weighted average\n", "- ✅ max_new_tokens = 5 - More flexibility in response\n", "- ✅ temperature = 0.1 - More consistent predictions\n", "\n", "**Expected improvement:** ~10-15% reduction in average error\n" ] }, { "cell_type": "markdown", "metadata": { "id": "hO4DdLa81ihp" }, "source": [ "### Expected Performance\n", "\n", "**Baseline comparisons:**\n", "- GPT-4o: $76 avg error\n", "- Llama 3.1 base: $396 avg error \n", "- Human: $127 avg error\n", "\n", "**Fine-tuned model (optimized):**\n", "- Target: $70-85 avg error\n", "- With 8-bit quant + top_K=5 + temp=0.1\n", "- Expected to rival or beat GPT-4o\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "T4", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }