{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "fOxyiqtzKqLg",
"outputId": "714d12c5-775e-42c8-b51c-979a9112b808"
},
"outputs": [],
"source": [
"!pip install -q datasets requests torch peft bitsandbytes transformers trl accelerate sentencepiece tiktoken matplotlib gradio modal ollama langchain langchain-core langchain-text-splitters langchain-openai langchain-chroma langchain-community faiss-cpu feedparser"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zyxwwUw6LWXK"
},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Zzqc9nk1L_5w",
"outputId": "0af5e1bb-2ccb-4838-b7a5-76c19285d094"
},
"outputs": [],
"source": [
"from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredPDFLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.schema import Document\n",
"from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
"from langchain_chroma import Chroma\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.manifold import TSNE\n",
"import numpy as np\n",
"import plotly.graph_objects as go\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.embeddings import HuggingFaceEmbeddings\n",
"from huggingface_hub import login\n",
"import torch\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, set_seed\n",
"from google.colab import userdata\n",
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "u_vbe1itNZ2n"
},
"outputs": [],
"source": [
"base_path = \"/content/drive/MyDrive/sameer-db\"\n",
"folders = glob.glob(os.path.join(base_path, \"*\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "f0lJBMjhMrLO",
"outputId": "5cdc6327-3a3a-4d5b-ca05-4c1383c020e2"
},
"outputs": [],
"source": [
"def add_metadata(doc, doc_type):\n",
" doc.metadata[\"doc_type\"] = doc_type\n",
" return doc\n",
"\n",
"# With thanks to CG and Jon R, students on the course, for this fix needed for some users\n",
"text_loader_kwargs = {'encoding': 'utf-8'}\n",
"# If that doesn't work, some Windows users might need to uncomment the next line instead\n",
"# text_loader_kwargs={'autodetect_encoding': True}\n",
"\n",
"documents = []\n",
"for folder in folders:\n",
" doc_type = os.path.basename(folder)\n",
" loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)\n",
" folder_docs = loader.load()\n",
" documents.extend([add_metadata(doc, doc_type) for doc in folder_docs])\n",
"\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"chunks = text_splitter.split_documents(documents)\n",
"\n",
"print(f\"Total number of chunks: {len(chunks)}\")\n",
"print(f\"Document types found: {set(doc.metadata['doc_type'] for doc in documents)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zSjwqZ3YNBLp"
},
"outputs": [],
"source": [
"hf_token = userdata.get('HF_TOKEN')\n",
"login(hf_token, add_to_git_credential=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "t7rraUyHNkdP"
},
"outputs": [],
"source": [
"Phi_4 = \"microsoft/Phi-4-mini-instruct\"\n",
"db_name = \"/content/drive/MyDrive/phi_vector_db\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pDjj2S5ZPzF1"
},
"outputs": [],
"source": [
"quant_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_quant_type=\"nf4\"\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 66,
"referenced_widgets": [
"2a0377fc1e0c4c08944be1857c4e2409",
"7c8335e0c3f8459d89f3b9815a896e39",
"0fcb91f0551a4871b747f82e5fa6ff38",
"fa5c6cf8395840e08e2743d6e88190be",
"8613224ada934e7ba57fd5184ea61044",
"1180c8fe49e94873a024d38d33649852",
"4395c417cc854fc48da18d0ddd62671e",
"d678106a6601478cb5712991604788f0",
"5c4a8d25dbc942d5a596c8fa8580a785",
"c1b076c063e04536831d68e5e48f1692",
"9bcee7f185434cd0b1a998448236548c"
]
},
"id": "qzQzgir5VUBF",
"outputId": "1e7198a3-4857-49ab-f368-d430beddbf42"
},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(Phi_4, trust_remote_code=True)\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"tokenizer.padding_side = \"right\"\n",
"\n",
"base_model = AutoModelForCausalLM.from_pretrained(\n",
" Phi_4,\n",
" quantization_config=quant_config,\n",
" device_map=\"auto\",\n",
")\n",
"base_model.generation_config.pad_token_id = tokenizer.pad_token_id\n",
"\n",
"print(f\"Memory footprint: {base_model.get_memory_footprint() / 1e9:.1f} GB\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MjK3mBKHQBra"
},
"outputs": [],
"source": [
"from langchain.embeddings.base import Embeddings\n",
"from typing import List\n",
"import torch.nn.functional as F"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Q1BIMVW4Pf0A"
},
"outputs": [],
"source": [
"class PHI4Embeddings(Embeddings):\n",
" def __init__(self, tokenizer, model):\n",
" self.tokenizer = tokenizer\n",
" self.model = model\n",
" self.model.eval()\n",
"\n",
" def embed_documents(self, texts: List[str]) -> List[List[float]]:\n",
" embeddings = []\n",
" for text in texts:\n",
" with torch.no_grad():\n",
" inputs = self.tokenizer(text, return_tensors=\"pt\", truncation=True, max_length=512).to(self.model.device)\n",
" outputs = self.model(**inputs, output_hidden_states=True)\n",
" hidden_states = outputs.hidden_states[-1] # Last layer\n",
" attention_mask = inputs[\"attention_mask\"].unsqueeze(-1)\n",
" pooled = (hidden_states * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)\n",
" normalized = F.normalize(pooled, p=2, dim=1)\n",
" embeddings.append(normalized[0].cpu().tolist())\n",
" return embeddings\n",
"\n",
" def embed_query(self, text: str) -> List[float]:\n",
" return self.embed_documents([text])[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7aUTue_mMxof"
},
"outputs": [],
"source": [
"# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
"\n",
"embeddings = PHI4Embeddings(tokenizer, base_model)\n",
"\n",
"# Delete if already exists\n",
"\n",
"if os.path.exists(db_name):\n",
" Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "uWSe-8mATUag",
"outputId": "296804af-2283-435a-908c-48adaa6b4fd9"
},
"outputs": [],
"source": [
"# Create vectorstore\n",
"vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
"print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1ZQ6agxtSLp5",
"outputId": "8e5bf8a7-fbaf-427b-9a67-369945aba80e"
},
"outputs": [],
"source": [
"# Let's investigate the vectors\n",
"\n",
"collection = vectorstore._collection\n",
"count = collection.count()\n",
"\n",
"sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n",
"dimensions = len(sample_embedding)\n",
"print(f\"There are {count:,} vectors with {dimensions:,} dimensions in the vector store\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qBIOPr2YT5FM"
},
"outputs": [],
"source": [
"# Prework\n",
"result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n",
"vectors = np.array(result['embeddings'])\n",
"documents = result['documents']\n",
"metadatas = result['metadatas']\n",
"doc_types = [metadata['doc_type'] for metadata in metadatas]\n",
"colors = [['blue', 'red'][['personal', 'profile'].index(t)] for t in doc_types]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 617
},
"id": "fnuul36bUB3h",
"outputId": "f6cf1650-910a-4a03-f92d-9c200fb37de7"
},
"outputs": [],
"source": [
"# We humans find it easier to visalize things in 2D!\n",
"# Reduce the dimensionality of the vectors to 2D using t-SNE\n",
"# (t-distributed stochastic neighbor embedding)\n",
"\n",
"tsne = TSNE(n_components=2, random_state=42, perplexity=4)\n",
"reduced_vectors = tsne.fit_transform(vectors)\n",
"\n",
"# Create the 2D scatter plot\n",
"fig = go.Figure(data=[go.Scatter(\n",
" x=reduced_vectors[:, 0],\n",
" y=reduced_vectors[:, 1],\n",
" mode='markers',\n",
" marker=dict(size=5, color=colors, opacity=0.8),\n",
" text=[f\"Type: {t}
Text: {d[:100]}...\" for t, d in zip(doc_types, documents)],\n",
" hoverinfo='text'\n",
")])\n",
"\n",
"fig.update_layout(\n",
" title='2D Chroma Vector Store Visualization',\n",
" scene=dict(xaxis_title='x',yaxis_title='y'),\n",
" width=800,\n",
" height=600,\n",
" margin=dict(r=20, b=10, l=10, t=40)\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 717
},
"id": "Dgaeb7aRUF5d",
"outputId": "47546459-e169-4d2b-d0d7-4ebd135556e0"
},
"outputs": [],
"source": [
"# Let's try 3D!\n",
"\n",
"tsne = TSNE(n_components=3, random_state=42, perplexity=4)\n",
"reduced_vectors = tsne.fit_transform(vectors)\n",
"\n",
"# Create the 3D scatter plot\n",
"fig = go.Figure(data=[go.Scatter3d(\n",
" x=reduced_vectors[:, 0],\n",
" y=reduced_vectors[:, 1],\n",
" z=reduced_vectors[:, 2],\n",
" mode='markers',\n",
" marker=dict(size=5, color=colors, opacity=0.8),\n",
" text=[f\"Type: {t}
Text: {d[:100]}...\" for t, d in zip(doc_types, documents)],\n",
" hoverinfo='text'\n",
")])\n",
"\n",
"fig.update_layout(\n",
" title='3D Chroma Vector Store Visualization',\n",
" scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),\n",
" width=900,\n",
" height=700,\n",
" margin=dict(r=20, b=10, l=10, t=40)\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "BZcCyGI3YEwJ",
"outputId": "fd03e6ee-2ec1-4c6b-c14b-986255ca070c"
},
"outputs": [],
"source": [
"from langchain.llms import HuggingFacePipeline\n",
"from transformers import pipeline\n",
"\n",
"pipe = pipeline(\n",
" \"text-generation\",\n",
" model=base_model,\n",
" tokenizer=tokenizer,\n",
" max_new_tokens=4069,\n",
" return_full_text=False,\n",
" temperature=0.7\n",
")\n",
"\n",
"llm = HuggingFacePipeline(pipeline=pipe)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WDY8-1gJUM1v"
},
"outputs": [],
"source": [
"# set up the conversation memory for the chat\n",
"from langchain.schema import SystemMessage\n",
"memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
"# memory.chat_memory.add_message(SystemMessage(content='''You are a helpful assistant that answers questions about Sameer Khadatkar **in English only**, based only on the retrieved documents.\n",
"# Do not respond in any other language.'''))\n",
"\n",
"# the retriever is an abstraction over the VectorStore that will be used during RAG\n",
"retriever = vectorstore.as_retriever(k=2)\n",
"\n",
"# putting it together: set up the conversation chain with the GPT 3.5 LLM, the vector store and memory\n",
"conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dkuv5wD6jCrX"
},
"outputs": [],
"source": [
"def extract_first_helpful_answer(output: str) -> str:\n",
" if \"Helpful Answer:\" in output:\n",
" parts = output.split(\"Helpful Answer:\")\n",
" return parts[0].strip().split(\"\\n\")[0].strip() # Take only the first line after it\n",
" return output.strip()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZY5BH4C3UY1E"
},
"outputs": [],
"source": [
"query = \"Who is Sameer\"\n",
"result = conversation_chain.invoke({\"question\": query})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7n5PcQw0iRjO",
"outputId": "794c4dad-efde-4220-a9bd-50a1ae156229"
},
"outputs": [],
"source": [
"print(extract_first_helpful_answer(result[\"answer\"]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vW025q5Tkwc3",
"outputId": "e57d34e5-a64c-4e0b-e29b-d887214331c4"
},
"outputs": [],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JIev764VkCht"
},
"outputs": [],
"source": [
"# set up a new conversation memory for the chat\n",
"memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
"\n",
"# putting it together: set up the conversation chain with the GPT 4o-mini LLM, the vector store and memory\n",
"conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OO9o_VBholCx"
},
"outputs": [],
"source": [
"# Wrapping that in a function\n",
"\n",
"def chat(question, history):\n",
" result = conversation_chain.invoke({\"question\": question})\n",
" return extract_first_helpful_answer(result[\"answer\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 646
},
"id": "zOqiuWqCo04a",
"outputId": "fcb89961-1687-4d54-fcdd-ca5c590d69de"
},
"outputs": [],
"source": [
"# And in Gradio:\n",
"\n",
"view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qIYSDiQUo5WX"
},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0fcb91f0551a4871b747f82e5fa6ff38": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d678106a6601478cb5712991604788f0",
"max": 2,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_5c4a8d25dbc942d5a596c8fa8580a785",
"value": 2
}
},
"1180c8fe49e94873a024d38d33649852": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2a0377fc1e0c4c08944be1857c4e2409": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_7c8335e0c3f8459d89f3b9815a896e39",
"IPY_MODEL_0fcb91f0551a4871b747f82e5fa6ff38",
"IPY_MODEL_fa5c6cf8395840e08e2743d6e88190be"
],
"layout": "IPY_MODEL_8613224ada934e7ba57fd5184ea61044"
}
},
"4395c417cc854fc48da18d0ddd62671e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5c4a8d25dbc942d5a596c8fa8580a785": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"7c8335e0c3f8459d89f3b9815a896e39": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_1180c8fe49e94873a024d38d33649852",
"placeholder": "",
"style": "IPY_MODEL_4395c417cc854fc48da18d0ddd62671e",
"value": "Loading checkpoint shards: 100%"
}
},
"8613224ada934e7ba57fd5184ea61044": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9bcee7f185434cd0b1a998448236548c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c1b076c063e04536831d68e5e48f1692": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d678106a6601478cb5712991604788f0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fa5c6cf8395840e08e2743d6e88190be": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c1b076c063e04536831d68e5e48f1692",
"placeholder": "",
"style": "IPY_MODEL_9bcee7f185434cd0b1a998448236548c",
"value": " 2/2 [00:41<00:00, 19.69s/it]"
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}