{ "cells": [ { "cell_type": "markdown", "id": "dfe37963-1af6-44fc-a841-8e462443f5e6", "metadata": {}, "source": [ "## gmail RAG assistant" ] }, { "cell_type": "code", "execution_count": null, "id": "ba2779af-84ef-4227-9e9e-6eaf0df87e77", "metadata": {}, "outputs": [], "source": [ "# imports\n", "\n", "import os\n", "import glob\n", "from dotenv import load_dotenv\n", "import gradio as gr\n", "# NEW IMPORTS FOR GMAIL\n", "from google.auth.transport.requests import Request\n", "from google.oauth2.credentials import Credentials\n", "from google_auth_oauthlib.flow import InstalledAppFlow\n", "from googleapiclient.discovery import build\n", "from datetime import datetime\n", "import base64\n", "from email.mime.text import MIMEText\n", "import re" ] }, { "cell_type": "code", "execution_count": null, "id": "802137aa-8a74-45e0-a487-d1974927d7ca", "metadata": {}, "outputs": [], "source": [ "# imports for langchain, plotly and Chroma\n", "\n", "from langchain.document_loaders import DirectoryLoader, TextLoader\n", "from langchain.text_splitter import CharacterTextSplitter\n", "from langchain.schema import Document\n", "from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n", "from langchain_chroma import Chroma\n", "import matplotlib.pyplot as plt\n", "from sklearn.manifold import TSNE\n", "import numpy as np\n", "import plotly.graph_objects as go\n", "from langchain.memory import ConversationBufferMemory\n", "from langchain.chains import ConversationalRetrievalChain\n", "from langchain.embeddings import HuggingFaceEmbeddings" ] }, { "cell_type": "code", "execution_count": null, "id": "58c85082-e417-4708-9efe-81a5d55d1424", "metadata": {}, "outputs": [], "source": [ "# price is a factor for our company, so we're going to use a low cost model\n", "\n", "MODEL = \"gpt-4o-mini\"\n", "db_name = \"vector_db\"" ] }, { "cell_type": "code", "execution_count": null, "id": "ee78efcb-60fe-449e-a944-40bab26261af", "metadata": {}, "outputs": [], "source": [ "# Load environment variables in a file called .env\n", "\n", "load_dotenv(override=True)\n", "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n", "# NEW: Gmail API credentials\n", "SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n", "CREDENTIALS_FILE = 'credentials.json' # Download from Google Cloud Console\n", "TOKEN_FILE = 'token.json'" ] }, { "cell_type": "code", "execution_count": null, "id": "730711a9-6ffe-4eee-8f48-d6cfb7314905", "metadata": { "scrolled": true }, "outputs": [], "source": [ "# Read in emails using LangChain's loaders\n", "# IMPORTANT: set the email received date range hard-coded below\n", "\n", "def authenticate_gmail():\n", " \"\"\"Authenticate and return Gmail service object\"\"\"\n", " creds = None\n", " if os.path.exists(TOKEN_FILE):\n", " creds = Credentials.from_authorized_user_file(TOKEN_FILE, SCOPES)\n", " \n", " if not creds or not creds.valid:\n", " if creds and creds.expired and creds.refresh_token:\n", " creds.refresh(Request())\n", " else:\n", " flow = InstalledAppFlow.from_client_secrets_file(CREDENTIALS_FILE, SCOPES)\n", " creds = flow.run_local_server(port=0)\n", " \n", " with open(TOKEN_FILE, 'w') as token:\n", " token.write(creds.to_json())\n", " \n", " return build('gmail', 'v1', credentials=creds)\n", "\n", "def get_email_content(service, message_id):\n", " \"\"\"Extract email content from message\"\"\"\n", " try:\n", " message = service.users().messages().get(userId='me', id=message_id, format='full').execute()\n", " \n", " # Extract basic info\n", " headers = message['payload'].get('headers', [])\n", " subject = next((h['value'] for h in headers if h['name'] == 'Subject'), 'No Subject')\n", " sender = next((h['value'] for h in headers if h['name'] == 'From'), 'Unknown Sender')\n", " date = next((h['value'] for h in headers if h['name'] == 'Date'), 'Unknown Date')\n", " \n", " # Extract body\n", " body = \"\"\n", " if 'parts' in message['payload']:\n", " for part in message['payload']['parts']:\n", " if part['mimeType'] == 'text/plain':\n", " data = part['body']['data']\n", " body = base64.urlsafe_b64decode(data).decode('utf-8')\n", " break\n", " else:\n", " if message['payload']['body'].get('data'):\n", " body = base64.urlsafe_b64decode(message['payload']['body']['data']).decode('utf-8')\n", " \n", " # Clean up body text\n", " body = re.sub(r'\\s+', ' ', body).strip()\n", " \n", " return {\n", " 'subject': subject,\n", " 'sender': sender,\n", " 'date': date,\n", " 'body': body,\n", " 'id': message_id\n", " }\n", " except Exception as e:\n", " print(f\"Error processing message {message_id}: {str(e)}\")\n", " return None\n", "\n", "def load_gmail_documents(start_date, end_date, max_emails=100):\n", " \"\"\"Load emails from Gmail between specified dates\"\"\"\n", " service = authenticate_gmail()\n", " \n", " # Format dates for Gmail API (YYYY/MM/DD)\n", " start_date_str = start_date.strftime('%Y/%m/%d')\n", " end_date_str = end_date.strftime('%Y/%m/%d')\n", " \n", " # Build query\n", " query = f'after:{start_date_str} before:{end_date_str}'\n", " \n", " # Get message list\n", " result = service.users().messages().list(userId='me', q=query, maxResults=max_emails).execute()\n", " messages = result.get('messages', [])\n", " \n", " print(f\"Found {len(messages)} emails between {start_date_str} and {end_date_str}\")\n", " \n", " # Convert to LangChain documents\n", " documents = []\n", " for i, message in enumerate(messages):\n", " print(f\"Processing email {i+1}/{len(messages)}\")\n", " email_data = get_email_content(service, message['id'])\n", " \n", " if email_data and email_data['body']:\n", " # Create document content\n", " content = f\"\"\"Subject: {email_data['subject']}\n", "From: {email_data['sender']}\n", "Date: {email_data['date']}\n", "\n", "{email_data['body']}\"\"\"\n", " \n", " # Create LangChain document\n", " doc = Document(\n", " page_content=content,\n", " metadata={\n", " \"doc_type\": \"email\",\n", " \"subject\": email_data['subject'],\n", " \"sender\": email_data['sender'],\n", " \"date\": email_data['date'],\n", " \"message_id\": email_data['id']\n", " }\n", " )\n", " documents.append(doc)\n", " \n", " return documents\n", "\n", "# SET YOUR DATE RANGE HERE\n", "start_date = datetime(2025, 6, 20) # YYYY, MM, DD\n", "end_date = datetime(2025, 6, 26) # YYYY, MM, DD\n", "\n", "# Load Gmail documents \n", "documents = load_gmail_documents(start_date, end_date, max_emails=200)\n" ] }, { "cell_type": "code", "execution_count": null, "id": "c59de72d-f965-44b3-8487-283e4c623b1d", "metadata": {}, "outputs": [], "source": [ "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "chunks = text_splitter.split_documents(documents)\n", "\n", "print(f\"Total number of chunks: {len(chunks)}\")\n", "print(f\"Document types found: {set(doc.metadata['doc_type'] for doc in documents)}\")" ] }, { "cell_type": "code", "execution_count": null, "id": "78998399-ac17-4e28-b15f-0b5f51e6ee23", "metadata": {}, "outputs": [], "source": [ "# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n", "# Chroma is a popular open source Vector Database based on SQLLite\n", "\n", "embeddings = OpenAIEmbeddings()\n", "\n", "# If you would rather use the free Vector Embeddings from HuggingFace sentence-transformers\n", "# Then replace embeddings = OpenAIEmbeddings()\n", "# with:\n", "# from langchain.embeddings import HuggingFaceEmbeddings\n", "# embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n", "\n", "# Delete if already exists\n", "\n", "if os.path.exists(db_name):\n", " Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n", "\n", "# Create vectorstore\n", "\n", "vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n", "print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")" ] }, { "cell_type": "code", "execution_count": null, "id": "ff2e7687-60d4-4920-a1d7-a34b9f70a250", "metadata": {}, "outputs": [], "source": [ "# Let's investigate the vectors\n", "\n", "collection = vectorstore._collection\n", "count = collection.count()\n", "\n", "sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n", "dimensions = len(sample_embedding)\n", "print(f\"There are {count:,} vectors with {dimensions:,} dimensions in the vector store\")" ] }, { "cell_type": "markdown", "id": "b0d45462-a818-441c-b010-b85b32bcf618", "metadata": {}, "source": [ "## Visualizing the Vector Store\n", "\n", "Let's take a minute to look at the documents and their embedding vectors to see what's going on." ] }, { "cell_type": "code", "execution_count": null, "id": "b98adf5e-d464-4bd2-9bdf-bc5b6770263b", "metadata": {}, "outputs": [], "source": [ "# Prework (with thanks to Jon R for identifying and fixing a bug in this!)\n", "\n", "result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n", "vectors = np.array(result['embeddings'])\n", "documents = result['documents']\n", "metadatas = result['metadatas']\n", "\n", "# Alternatively, color by sender:\n", "senders = [metadata.get('sender', 'unknown') for metadata in metadatas]\n", "unique_senders = list(set(senders))\n", "sender_colors = ['blue', 'green', 'red', 'orange', 'purple', 'brown', 'pink', 'gray']\n", "colors = [sender_colors[unique_senders.index(sender) % len(sender_colors)] for sender in senders]" ] }, { "cell_type": "code", "execution_count": null, "id": "427149d5-e5d8-4abd-bb6f-7ef0333cca21", "metadata": {}, "outputs": [], "source": [ "# We humans find it easier to visalize things in 2D!\n", "# Reduce the dimensionality of the vectors to 2D using t-SNE\n", "# (t-distributed stochastic neighbor embedding)\n", "\n", "tsne = TSNE(n_components=2, random_state=42)\n", "reduced_vectors = tsne.fit_transform(vectors)\n", "\n", "# Create the 2D scatter plot\n", "fig = go.Figure(data=[go.Scatter(\n", " x=reduced_vectors[:, 0],\n", " y=reduced_vectors[:, 1],\n", " mode='markers',\n", " marker=dict(size=5, color=colors, opacity=0.8),\n", " text=[f\"Type: {t}
Text: {d[:100]}...\" for t, d in zip(senders, documents)],\n", " hoverinfo='text'\n", ")])\n", "\n", "fig.update_layout(\n", " title='2D Chroma Vector Store Visualization',\n", " scene=dict(xaxis_title='x',yaxis_title='y'),\n", " width=800,\n", " height=600,\n", " margin=dict(r=20, b=10, l=10, t=40)\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "e1418e88-acd5-460a-bf2b-4e6efc88e3dd", "metadata": {}, "outputs": [], "source": [ "# Let's try 3D!\n", "\n", "tsne = TSNE(n_components=3, random_state=42)\n", "reduced_vectors = tsne.fit_transform(vectors)\n", "\n", "# Create the 3D scatter plot\n", "fig = go.Figure(data=[go.Scatter3d(\n", " x=reduced_vectors[:, 0],\n", " y=reduced_vectors[:, 1],\n", " z=reduced_vectors[:, 2],\n", " mode='markers',\n", " marker=dict(size=5, color=colors, opacity=0.8),\n", " text=[f\"Type: {t}
Text: {d[:100]}...\" for t, d in zip(senders, documents)],\n", " hoverinfo='text'\n", ")])\n", "\n", "fig.update_layout(\n", " title='3D Chroma Vector Store Visualization',\n", " scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),\n", " width=900,\n", " height=700,\n", " margin=dict(r=20, b=10, l=10, t=40)\n", ")\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "bbbcb659-13ce-47ab-8a5e-01b930494964", "metadata": {}, "source": [ "## Langchain and Gradio to prototype a chat with the LLM\n" ] }, { "cell_type": "code", "execution_count": null, "id": "d72567e8-f891-4797-944b-4612dc6613b1", "metadata": {}, "outputs": [], "source": [ "\n", "from langchain.prompts import PromptTemplate\n", "from langchain.chains.combine_documents import create_stuff_documents_chain\n", "from langchain.chains import create_retrieval_chain\n", "\n", "# create a new Chat with OpenAI\n", "llm = ChatOpenAI(temperature=0.7, model_name=MODEL)\n", "\n", "# Alternative - if you'd like to use Ollama locally, uncomment this line instead\n", "# llm = ChatOpenAI(temperature=0.7, model_name='llama3.2', base_url='http://localhost:11434/v1', api_key='ollama')\n", "\n", "# change LLM standard prompt (standard prompt defaults the answer to be 'I don't know' too often, especially when using a small LLM\n", "\n", "qa_prompt=PromptTemplate.from_template(\"Use the following pieces of context to answer the user's question. Answer as best you can given the information you have;\\\n", " if you have a reasonable idea of the answer,/then explain it and mention that you're unsure. \\\n", " But if you don't know the answer, don't make it up. \\\n", " {context} \\\n", " Question: {question} \\\n", " Helpful Answer:\"\n", " )\n", "\n", "\n", "# Wrap into a StuffDocumentsChain, matching the variable name 'context'\n", "combine_docs_chain = create_stuff_documents_chain(\n", " llm=llm,\n", " prompt=qa_prompt,\n", " document_variable_name=\"context\"\n", ")\n", "\n", "# set up the conversation memory for the chat\n", "#memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n", "memory = ConversationBufferMemory(\n", " memory_key='chat_history', \n", " return_messages=True,\n", " output_key='answer' \n", ")\n", "\n", "# the retriever is an abstraction over the VectorStore that will be used during RAG\n", "retriever = vectorstore.as_retriever(search_kwargs={\"k\": 10})\n", "\n", "# putting it together: set up the conversation chain with the GPT 3.5 LLM, the vector store and memory\n", "# conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)\n", "\n", "conversation_chain = ConversationalRetrievalChain.from_llm(\n", " llm=llm,\n", " retriever=retriever,\n", " memory=memory,\n", " combine_docs_chain_kwargs={\"prompt\": qa_prompt},\n", " return_source_documents=True\n", ")\n", "\n", "def chat(question, history):\n", " result = conversation_chain.invoke({\"question\": question})\n", " return result[\"answer\"]\n", "\n", "view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=False)" ] }, { "cell_type": "code", "execution_count": null, "id": "fe4229aa-6afe-4592-93a4-71a47ab69846", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }