{
"cells": [
{
"cell_type": "markdown",
"id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9",
"metadata": {},
"source": [
"# Code Generator\n",
"\n",
"The requirement: use a Frontier model to generate high performance C++ code from Python code\n"
]
},
{
"cell_type": "markdown",
"id": "d5ccb926-7b49-44a4-99ab-8ef20b5778c0",
"metadata": {},
"source": [
"
\n",
" \n",
" \n",
" \n",
" | \n",
" \n",
" Reminder: OPTIONAL to execute C++ code\n",
" As an alternative, you can run it on the website given yesterday\n",
" | \n",
"
\n",
"
"
]
},
{
"cell_type": "markdown",
"id": "d90e04a2-5b8a-4fd5-9db8-27c02f033313",
"metadata": {},
"source": [
"\n",
" \n",
" \n",
" \n",
" | \n",
" \n",
" Important Note\n",
" \n",
" In this lab, I use free open source models on Ollama. I also use paid open-source models via Groq and OpenRouter. Only pick the models you want to!\n",
" \n",
" | \n",
"
\n",
"
"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import io\n",
"import sys\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import gradio as gr\n",
"import subprocess\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f672e1c-87e9-4865-b760-370fa605e614",
"metadata": {},
"outputs": [],
"source": [
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"grok_api_key = os.getenv('GROK_API_KEY')\n",
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
"openrouter_api_key = os.getenv('OPENROUTER_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"if anthropic_api_key:\n",
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
"else:\n",
" print(\"Anthropic API Key not set (and this is optional)\")\n",
"\n",
"if google_api_key:\n",
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
"else:\n",
" print(\"Google API Key not set (and this is optional)\")\n",
"\n",
"if grok_api_key:\n",
" print(f\"Grok API Key exists and begins {grok_api_key[:4]}\")\n",
"else:\n",
" print(\"Grok API Key not set (and this is optional)\")\n",
"\n",
"if groq_api_key:\n",
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
"else:\n",
" print(\"Groq API Key not set (and this is optional)\")\n",
"\n",
"if openrouter_api_key:\n",
" print(f\"OpenRouter API Key exists and begins {openrouter_api_key[:6]}\")\n",
"else:\n",
" print(\"OpenRouter API Key not set (and this is optional)\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59863df1",
"metadata": {},
"outputs": [],
"source": [
"# Connect to client libraries\n",
"\n",
"openai = OpenAI()\n",
"\n",
"anthropic_url = \"https://api.anthropic.com/v1/\"\n",
"gemini_url = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
"grok_url = \"https://api.x.ai/v1\"\n",
"groq_url = \"https://api.groq.com/openai/v1\"\n",
"ollama_url = \"http://localhost:11434/v1\"\n",
"openrouter_url = \"https://openrouter.ai/api/v1\"\n",
"\n",
"anthropic = OpenAI(api_key=anthropic_api_key, base_url=anthropic_url)\n",
"gemini = OpenAI(api_key=google_api_key, base_url=gemini_url)\n",
"grok = OpenAI(api_key=grok_api_key, base_url=grok_url)\n",
"groq = OpenAI(api_key=groq_api_key, base_url=groq_url)\n",
"ollama = OpenAI(api_key=\"ollama\", base_url=ollama_url)\n",
"openrouter = OpenAI(api_key=openrouter_api_key, base_url=openrouter_url)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
"metadata": {},
"outputs": [],
"source": [
"models = [\"gpt-5\", \"claude-sonnet-4-5-20250929\", \"grok-4\", \"gemini-2.5-pro\", \"qwen2.5-coder\", \"deepseek-coder-v2\", \"gpt-oss:20b\", \"qwen/qwen3-coder-30b-a3b-instruct\", \"openai/gpt-oss-120b\", ]\n",
"\n",
"clients = {\"gpt-5\": openai, \"claude-sonnet-4-5-20250929\": anthropic, \"grok-4\": grok, \"gemini-2.5-pro\": gemini, \"openai/gpt-oss-120b\": groq, \"qwen2.5-coder\": ollama, \"deepseek-coder-v2\": ollama, \"gpt-oss:20b\": ollama, \"qwen/qwen3-coder-30b-a3b-instruct\": openrouter}\n",
"\n",
"# Want to keep costs ultra-low? Replace this with models of your choice, using the examples from yesterday"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "68c1f1be",
"metadata": {},
"outputs": [],
"source": [
"from system_info import retrieve_system_info\n",
"\n",
"system_info = retrieve_system_info()\n",
"system_info"
]
},
{
"cell_type": "markdown",
"id": "81e92c12",
"metadata": {},
"source": [
"## Overwrite this with the commands from yesterday\n",
"\n",
"Or just use the website like yesterday:\n",
"\n",
" https://www.programiz.com/cpp-programming/online-compiler/"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d734a634",
"metadata": {},
"outputs": [],
"source": [
"compile_command = [\"clang++\", \"-std=c++17\", \"-Ofast\", \"-mcpu=native\", \"-flto=thin\", \"-fvisibility=hidden\", \"-DNDEBUG\", \"main.cpp\", \"-o\", \"main\"]\n",
"run_command = [\"./main\"]\n"
]
},
{
"cell_type": "markdown",
"id": "f0b0a437",
"metadata": {},
"source": [
"## And now, on with the main task"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6896636f-923e-4a2c-9d6c-fac07828a201",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"\"\"\n",
"Your task is to convert Python code into high performance C++ code.\n",
"Respond only with C++ code. Do not provide any explanation other than occasional comments.\n",
"The C++ response needs to produce an identical output in the fastest possible time.\n",
"\"\"\"\n",
"\n",
"def user_prompt_for(python):\n",
" return f\"\"\"\n",
"Port this Python code to C++ with the fastest possible implementation that produces identical output in the least time.\n",
"The system information is:\n",
"{system_info}\n",
"Your response will be written to a file called main.cpp and then compiled and executed; the compilation command is:\n",
"{compile_command}\n",
"Respond only with C++ code.\n",
"Python code to port:\n",
"\n",
"```python\n",
"{python}\n",
"```\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e7b3546-57aa-4c29-bc5d-f211970d04eb",
"metadata": {},
"outputs": [],
"source": [
"def messages_for(python):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt_for(python)}\n",
" ]\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
"metadata": {},
"outputs": [],
"source": [
"def write_output(cpp):\n",
" with open(\"main.cpp\", \"w\") as f:\n",
" f.write(cpp)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7d2fea8-74c6-4421-8f1e-0e76d5b201b9",
"metadata": {},
"outputs": [],
"source": [
"def port(model, python):\n",
" client = clients[model]\n",
" reasoning_effort = \"high\" if 'gpt' in model else None\n",
" response = client.chat.completions.create(model=model, messages=messages_for(python), reasoning_effort=reasoning_effort)\n",
" reply = response.choices[0].message.content\n",
" reply = reply.replace('```cpp','').replace('```','')\n",
" write_output(reply)\n",
" return reply"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1cbb778-fa57-43de-b04b-ed523f396c38",
"metadata": {},
"outputs": [],
"source": [
"pi = \"\"\"\n",
"import time\n",
"\n",
"def calculate(iterations, param1, param2):\n",
" result = 1.0\n",
" for i in range(1, iterations+1):\n",
" j = i * param1 - param2\n",
" result -= (1/j)\n",
" j = i * param1 + param2\n",
" result += (1/j)\n",
" return result\n",
"\n",
"start_time = time.time()\n",
"result = calculate(200_000_000, 4, 1) * 4\n",
"end_time = time.time()\n",
"\n",
"print(f\"Result: {result:.12f}\")\n",
"print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7fe1cd4b-d2c5-4303-afed-2115a3fef200",
"metadata": {},
"outputs": [],
"source": [
"def run_python(code):\n",
" globals_dict = {\"__builtins__\": __builtins__}\n",
"\n",
" buffer = io.StringIO()\n",
" old_stdout = sys.stdout\n",
" sys.stdout = buffer\n",
"\n",
" try:\n",
" exec(code, globals_dict)\n",
" output = buffer.getvalue()\n",
" except Exception as e:\n",
" output = f\"Error: {e}\"\n",
" finally:\n",
" sys.stdout = old_stdout\n",
"\n",
" return output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4194e40c-04ab-4940-9d64-b4ad37c5bb40",
"metadata": {},
"outputs": [],
"source": [
"def compile_and_run():\n",
" try:\n",
" subprocess.run(compile_command, check=True, text=True, capture_output=True)\n",
" print(subprocess.run(run_command, check=True, text=True, capture_output=True).stdout)\n",
" print(subprocess.run(run_command, check=True, text=True, capture_output=True).stdout)\n",
" print(subprocess.run(run_command, check=True, text=True, capture_output=True).stdout)\n",
" except subprocess.CalledProcessError as e:\n",
" print(f\"An error occurred:\\n{e.stderr}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1ddb38e-6b0a-4c37-baa4-ace0b7de887a",
"metadata": {},
"outputs": [],
"source": [
"with gr.Blocks() as ui:\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python code:\", lines=28, value=pi)\n",
" cpp = gr.Textbox(label=\"C++ code:\", lines=28)\n",
" with gr.Row():\n",
" model = gr.Dropdown(models, label=\"Select model\", value=models[0])\n",
" convert = gr.Button(\"Convert code\")\n",
"\n",
" convert.click(port, inputs=[model, python], outputs=[cpp])\n",
"\n",
"ui.launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "28969928",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9cc1c03",
"metadata": {},
"outputs": [],
"source": [
"compile_and_run()"
]
},
{
"cell_type": "markdown",
"id": "80037156",
"metadata": {},
"source": [
"Qwen 2.5 Coder: Fail \n",
"DeepSeek Coder v2: 0.114050084 \n",
"OpenAI gpt-oss 20B: 0.080438 \n",
"Qwen 30B: 0.113734 \n",
"OpenAI gpt-oss 120B: 1.407383\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "ad8d4e52",
"metadata": {},
"source": [
"In Ed's experiments, the performance speedups were:\n",
"\n",
"9th place: Qwen 2.5 Coder: Fail \n",
"8th place: OpenAI GPT-OSS 120B: 14X speedup \n",
"7th place: DeepSeek Coder v2: 168X speedup \n",
"6th place: Qwen3 Coder 30B: 168X speedup \n",
"5th place: Claude Sonnet 4.5: 184X speedup \n",
"4th place: GPT-5: 233X speedup \n",
"**3rd place: oss-20B: 238X speedup** \n",
"2nd place: Grok 4: 1060X speedup \n",
"1st place: Gemini 2.5 Pro: 1440X speedup "
]
},
{
"cell_type": "markdown",
"id": "6e617df9",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}