{ "cells": [ { "cell_type": "markdown", "id": "7bb9010e-48a8-491e-a2a9-1a8dacc26f87", "metadata": {}, "source": [ "# Movie Suggestion using Ollama Running Locally\n", "\n", "#### Takes the user input like languages and Genre and suggests Top 10 Movies of the selected attributes.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "ad049302-dce8-4a0a-88ab-e485ac15fbe4", "metadata": {}, "outputs": [], "source": [ "import requests\n", "from IPython.display import display, Markdown\n", "\n", "def get_movie_recommendations(language, genre, top_n=10, model='llama3.2'):\n", " api_url = \"http://localhost:11434/api/generate\"\n", " prompt = (\n", " f\"Recommend {top_n} well-rated {language} movies from the {genre} genre. \"\n", " \"For each movie, provide the name and a 1-2 sentence preview of its story. \"\n", " \"Return the results as a Markdown table with columns: Title, Short Summary.\"\n", " )\n", " data = {\n", " \"model\": model,\n", " \"prompt\": prompt,\n", " \"options\": {\"num_predict\": 800},\n", " \"stream\": False\n", " }\n", " response = requests.post(api_url, json=data)\n", " # Extract text response (could be markdown table already)\n", " return response.json().get(\"response\", \"\").strip()" ] }, { "cell_type": "markdown", "id": "01400553-419c-4798-8f19-e32e49379761", "metadata": {}, "source": [ "#### Enter your Language and Genre" ] }, { "cell_type": "code", "execution_count": null, "id": "a7527230-1e10-4b67-94c0-a84519b256c2", "metadata": {}, "outputs": [], "source": [ "language = input(\"Enter preferred language (e.g., French, Japanese): \").strip()\n", "genre = input(\"Enter preferred genre (e.g., Drama, Comedy, Thriller): \").strip()" ] }, { "cell_type": "code", "execution_count": null, "id": "7ff0146f-b37e-4218-9678-15a40bed3659", "metadata": {}, "outputs": [], "source": [ "recommendations_md = get_movie_recommendations(language, genre)\n", "# This prints out the Markdown table as formatted by the Llama 3.2 model\n", "from IPython.display import display, Markdown\n", "\n", "display(Markdown(recommendations_md))" ] }, { "cell_type": "markdown", "id": "58cc0fa4-a2a6-4597-8ae9-39970fb2a7b5", "metadata": {}, "source": [ "### The Result will be displayed in a markdown fashion in a neat table with rows and columns." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }