{ "cells": [ { "cell_type": "markdown", "id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5", "metadata": {}, "source": [ "# End of week 1 exercise\n", "\n", "To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n", "and responds with an explanation. This is a tool that you will be able to use yourself during the course!" ] }, { "cell_type": "code", "execution_count": null, "id": "c1070317-3ed9-4659-abe3-828943230e03", "metadata": {}, "outputs": [], "source": [ "# imports\n", "import os\n", "from openai import OpenAI\n", "from dotenv import load_dotenv" ] }, { "cell_type": "code", "execution_count": null, "id": "4a456906-915a-4bfd-bb9d-57e505c5093f", "metadata": {}, "outputs": [], "source": [ "# constants\n", "MODEL_GPT = 'gpt-4o-mini'\n", "MODEL_LLAMA = 'llama3.2'" ] }, { "cell_type": "code", "execution_count": null, "id": "a8d7923c-5f28-4c30-8556-342d7c8497c1", "metadata": {}, "outputs": [], "source": [ "# set up environment\n", "system_prompt = \"\"\"\n", "You are a technical expert of AI and LLMs.\n", "\"\"\"\n", "\n", "user_prompt_prefix = \"\"\"\n", "Provide deep explanations of the provided text.\n", "\"\"\"\n", "\n", "user_prompt = \"\"\"\n", "Explain the provided text.\n", "\"\"\"\n", "client = OpenAI()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "3f0d0137-52b0-47a8-81a8-11a90a010798", "metadata": {}, "outputs": [], "source": [ "# here is the question; type over this to ask something new\n", "\n", "question = \"\"\"\n", "Ollama does have an OpenAI compatible endpoint, but Gemini doesn't?\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Get gpt-4o-mini to answer, with streaming\n", "def messages_for(question):\n", " return [\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt_prefix + question}\n", " ]\n", "\n", "def run_model_streaming(model_name, question):\n", " stream = client.chat.completions.create(\n", " model=model_name,\n", " messages=messages_for(question),\n", " stream=True\n", " )\n", " for chunk in stream:\n", " content = chunk.choices[0].delta.content\n", " if content:\n", " print(content, end=\"\", flush=True)\n", "\n", "run_model_streaming(MODEL_GPT, question)" ] }, { "cell_type": "code", "execution_count": null, "id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538", "metadata": {}, "outputs": [], "source": [ "# Get Llama 3.2 to answer\n", "# imports\n", "import os\n", "from openai import OpenAI\n", "from dotenv import load_dotenv\n", "\n", "# set up environment\n", "client = OpenAI(\n", " base_url=os.getenv(\"OPENAI_BASE_URL\", \"http://localhost:11434/v1\"),\n", " api_key=os.getenv(\"OPENAI_API_KEY\", \"ollama\")\n", ")\n", "\n", "system_prompt = \"\"\"\n", "You are a technical expert of AI and LLMs.\n", "\"\"\"\n", "\n", "user_prompt_prefix = \"\"\"\n", "Provide deep explanations of the provided text.\n", "\"\"\"\n", "\n", "# question\n", "question = \"\"\"\n", "Ollama does have an OpenAI compatible endpoint, but Gemini doesn't?\n", "\"\"\"\n", "\n", "# message\n", "def messages_for(question):\n", " return [\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt_prefix + question}\n", " ]\n", "\n", "# response\n", "def run_model(model_name, question):\n", " response = client.chat.completions.create(\n", " model=model_name,\n", " messages=messages_for(question)\n", " )\n", " return response.choices[0].message.content\n", "\n", "# run and print result\n", "print(run_model(MODEL_LLAMA, question))\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.12" } }, "nbformat": 4, "nbformat_minor": 5 }