{ "cells": [ { "cell_type": "markdown", "id": "300ea30a", "metadata": {}, "source": [ "# Expert Knowledge Worker\n", "### This project is a question and answering agent based of exported WhatsApp chat messages in from a group chat" ] }, { "cell_type": "code", "execution_count": null, "id": "4bc17177", "metadata": {}, "outputs": [], "source": [ "# imports\n", "\n", "import os\n", "import glob\n", "from dotenv import load_dotenv\n", "import gradio as gr\n" ] }, { "cell_type": "code", "execution_count": null, "id": "400ac859", "metadata": {}, "outputs": [], "source": [ "# imports fomr langchain\n", "\n", "from langchain.document_loaders import DirectoryLoader, TextLoader\n", "from langchain.text_splitter import CharacterTextSplitter\n", "from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n", "from langchain_chroma import Chroma\n", "from langchain.memory import ConversationBufferMemory\n", "from langchain.chains import ConversationalRetrievalChain" ] }, { "cell_type": "code", "execution_count": null, "id": "22199256", "metadata": {}, "outputs": [], "source": [ "# importing the low cost model and database\n", "\n", "MODEL = \"gpt-5-nano\"\n", "db_name = \"vector_db\"" ] }, { "cell_type": "code", "execution_count": null, "id": "9f6be1f4", "metadata": {}, "outputs": [], "source": [ "load_dotenv(override=True)\n", "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')" ] }, { "cell_type": "code", "execution_count": null, "id": "b62754d4", "metadata": {}, "outputs": [], "source": [ "# Read in documents using LangChain's loaders\n", "# Take only .txt files in the knowledge-base folder (not subfolders)\n", "\n", "files = glob.glob(\"knowledge-base/*.txt\")\n", "\n", "print(files)\n", "\n", "def add_metadata(doc, doc_type):\n", " doc.metadata[\"doc_type\"] = doc_type\n", " return doc\n", "\n", "text_loader_kwargs = {'encoding': 'utf-8'}\n", "\n", "# Load all .txt files from knowledge-base folder\n", "doc_type = \"knowledge-base\"\n", "loader = DirectoryLoader(\n", " \"knowledge-base\", \n", " glob=\"*.txt\", # Only .txt files in root folder, not subfolders\n", " loader_cls=TextLoader, \n", " loader_kwargs=text_loader_kwargs\n", ")\n", "documents = loader.load()\n", "\n", "# Add metadata to all documents\n", "documents = [add_metadata(doc, doc_type) for doc in documents]\n", "\n", "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "chunks = text_splitter.split_documents(documents)\n", "\n", "print(f\"Total number of chunks: {len(chunks)}\")\n", "print(f\"Total number of documents: {len(documents)}\")" ] }, { "cell_type": "code", "execution_count": null, "id": "63aeac25", "metadata": {}, "outputs": [], "source": [ "embeddings = OpenAIEmbeddings()\n", "if os.path.exists(db_name):\n", " Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n", "\n", "\n", "vectorstore = Chroma.from_documents(\n", " documents=chunks, embedding=embeddings, persist_directory=db_name\n", ")\n", "print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")" ] }, { "cell_type": "code", "execution_count": null, "id": "5426899a", "metadata": {}, "outputs": [], "source": [ "# create a new Chat with OpenAI\n", "llm = ChatOpenAI(temperature=0.7, model_name=MODEL)\n", "memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n", "retriever = vectorstore.as_retriever()\n", "conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)" ] }, { "cell_type": "code", "execution_count": null, "id": "87e0e7c0", "metadata": {}, "outputs": [], "source": [ "query = \"Who is mentioned a lot?\"\n", "result = conversation_chain.invoke({\"question\": query})\n", "print(result[\"answer\"])" ] }, { "cell_type": "code", "execution_count": null, "id": "f36bac2f", "metadata": {}, "outputs": [], "source": [ "memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n", "conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)" ] }, { "cell_type": "code", "execution_count": null, "id": "1e087213", "metadata": {}, "outputs": [], "source": [ "def chat(question, history):\n", " result = conversation_chain.invoke({\"question\": question})\n", " return result[\"answer\"]" ] }, { "cell_type": "code", "execution_count": null, "id": "e1fd9b2d", "metadata": {}, "outputs": [], "source": [ "view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 5 }