{ "cells": [ { "cell_type": "markdown", "id": "a68b1042-558a-4051-85e2-9ffd7a31a871", "metadata": {}, "source": [ "# Website Summarization Using llama\n", "### Week 1 Day 2 Exercise" ] }, { "cell_type": "code", "execution_count": 2, "id": "176fcb2f-9ac7-460b-9fad-415e89c4920e", "metadata": {}, "outputs": [], "source": [ "import os\n", "import requests\n", "from dotenv import load_dotenv\n", "from bs4 import BeautifulSoup\n", "from IPython.display import Markdown, display\n", "from openai import OpenAI" ] }, { "cell_type": "code", "execution_count": 3, "id": "b9c63761-c904-491b-92c7-e41eb319c3e4", "metadata": {}, "outputs": [], "source": [ "# Constants\n", "\n", "# OLLAMA_API = \"http://localhost:11434/api/chat\"\n", "# HEADERS = {\"Content-Type\": \"application/json\"}\n", "MODEL = \"llama3.2\"" ] }, { "cell_type": "code", "execution_count": 4, "id": "afe29712-751c-4322-a4c6-aed01e6acf26", "metadata": {}, "outputs": [], "source": [ "headers = {\n", " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n", "}\n", "\n", "class Website:\n", "\n", " def __init__(self, url):\n", " \"\"\"\n", " Create this Website object from the given url using the BeautifulSoup library\n", " \"\"\"\n", " self.url = url\n", " response = requests.get(url, headers=headers)\n", " soup = BeautifulSoup(response.content, 'html.parser')\n", " self.title = soup.title.string if soup.title else \"No title found\"\n", " for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", " irrelevant.decompose()\n", " self.text = soup.body.get_text(separator=\"\\n\", strip=True)" ] }, { "cell_type": "code", "execution_count": 5, "id": "be3eeb3f-aec5-4ef8-9427-3b80b2dce919", "metadata": {}, "outputs": [], "source": [ "system_prompt = \"You are an assistant that analyzes the contents of a website \\\n", "and provides a short summary, ignoring text that might be navigation related. \\\n", "Respond in markdown.\"\n", "\n", "\n", "def user_prompt_for(website):\n", " user_prompt = f\"You are looking at a website titled {website.title}\"\n", " user_prompt += \"\\nThe contents of this website is as follows; \\\n", "please provide a short summary of this website in markdown. \\\n", "If it includes news or announcements, then summarize these too.\\n\\n\"\n", " user_prompt += website.text\n", " return user_prompt\n", " \n", "\n", "def messages_for(website):\n", " return [\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt_for(website)}\n", " ]\n", "\n", "ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", "\n", "def summarize(url):\n", " website = Website(url)\n", " response = ollama_via_openai.chat.completions.create(\n", " model = MODEL,\n", " messages = messages_for(website)\n", " )\n", " return response.choices[0].message.content\n", "\n", "\n", "def display_summary(url):\n", " summary = summarize(url)\n", " display(Markdown(summary))" ] }, { "cell_type": "code", "execution_count": 7, "id": "a78b587d-3a75-45a8-9ac5-f78dcddfa822", "metadata": {}, "outputs": [], "source": [ "display_summary(\"https://cnn.com\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }