{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Day 2 Solution - Chat Completions API & Ollama Integration\n", "\n", "This is my solution to the Day 2 assignment. I've implemented the Chat Completions API with both OpenAI and Ollama.\n", "\n", "## Features Implemented:\n", "- Chat Completions API understanding and implementation\n", "- OpenAI API integration with different models\n", "- Ollama local model integration (Llama 3.2)\n", "- Model comparison and testing\n", "- Advanced web scraping with Selenium fallback\n", "- Temperature and token control\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Day 2 setup complete! Ready for Chat Completions API.\n" ] } ], "source": [ "# Day 2 Solution - Imports and Setup\n", "import os\n", "import ssl\n", "import requests\n", "from bs4 import BeautifulSoup\n", "from urllib.parse import urljoin\n", "from IPython.display import Markdown, display\n", "from openai import OpenAI\n", "from dotenv import load_dotenv\n", "import ollama\n", "import time\n", "\n", "# Load environment variables\n", "load_dotenv(override=True)\n", "\n", "# SSL fix for Windows\n", "ssl._create_default_https_context = ssl._create_unverified_context\n", "os.environ['PYTHONHTTPSVERIFY'] = '0'\n", "os.environ['CURL_CA_BUNDLE'] = ''\n", "\n", "# Initialize OpenAI client\n", "openai = OpenAI()\n", "\n", "print(\"Day 2 setup complete! Ready for Chat Completions API.\")\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "## Chat Completions API - Key Concepts\n", "==================================================\n", "\n", "1. **What is Chat Completions API?**\n", " - The simplest way to call an LLM\n", " - Takes a conversation and predicts what should come next\n", " - Invented by OpenAI, now used by everyone\n", "\n", "2. **Key Components:**\n", " - Messages: List of conversation turns\n", " - Roles: system, user, assistant\n", " - Models: Different LLMs with different capabilities\n", " - Parameters: temperature, max_tokens, etc.\n", "\n", "3. **Message Format:**\n", " [\n", " {\"role\": \"system\", \"content\": \"You are a helpful assistant\"},\n", " {\"role\": \"user\", \"content\": \"Hello!\"},\n", " {\"role\": \"assistant\", \"content\": \"Hi there!\"},\n", " {\"role\": \"user\", \"content\": \"What's the weather?\"}\n", " ]\n", "\n", "\\nTesting basic Chat Completions API...\n", "Response: A Chat Completions API is a tool that allows developers to create applications that can interact with users through text-based conversations. Here’s a simple breakdown:\n", "\n", "1. **Chat**: This means it can hold a conversation, similar to how you chat with friends or a customer service representative.\n", "\n", "2. **Completions**: This refers to the API's ability to generate responses. When a user sends a message or question, the API processes that input and provides a relevant response.\n", "\n", "3. **API (Application Programming Interface)**: This is a set of rules that allows different software programs to communicate with each other. In this case, it lets your application talk to the chat service to get responses.\n", "\n", "So, in simple terms, a Chat Com\n" ] } ], "source": [ "# Understanding Chat Completions API\n", "print(\"## Chat Completions API - Key Concepts\")\n", "print(\"=\"*50)\n", "\n", "print(\"\"\"\n", "1. **What is Chat Completions API?**\n", " - The simplest way to call an LLM\n", " - Takes a conversation and predicts what should come next\n", " - Invented by OpenAI, now used by everyone\n", "\n", "2. **Key Components:**\n", " - Messages: List of conversation turns\n", " - Roles: system, user, assistant\n", " - Models: Different LLMs with different capabilities\n", " - Parameters: temperature, max_tokens, etc.\n", "\n", "3. **Message Format:**\n", " [\n", " {\"role\": \"system\", \"content\": \"You are a helpful assistant\"},\n", " {\"role\": \"user\", \"content\": \"Hello!\"},\n", " {\"role\": \"assistant\", \"content\": \"Hi there!\"},\n", " {\"role\": \"user\", \"content\": \"What's the weather?\"}\n", " ]\n", "\"\"\")\n", "\n", "# Test basic Chat Completions\n", "messages = [\n", " {\"role\": \"system\", \"content\": \"You are a helpful programming tutor.\"},\n", " {\"role\": \"user\", \"content\": \"Explain what a Chat Completions API is in simple terms.\"}\n", "]\n", "\n", "print(\"\\\\nTesting basic Chat Completions API...\")\n", "response = openai.chat.completions.create(\n", " model=\"gpt-4o-mini\",\n", " messages=messages,\n", " temperature=0.7,\n", " max_tokens=150\n", ")\n", "\n", "print(f\"Response: {response.choices[0].message.content}\")\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "## Model Comparison Test\n", "==================================================\n", "\\nπŸ€– Testing gpt-4o-mini...\n", "βœ… gpt-4o-mini: Machine learning is a subset of artificial intelligence that enables systems to learn from data and improve their performance over time without being explicitly programmed.\n", "\\nπŸ€– Testing gpt-4o...\n", "βœ… gpt-4o: Machine learning is a subset of artificial intelligence that enables systems to learn and improve from experience without being explicitly programmed.\n", "\\nπŸ€– Testing gpt-3.5-turbo...\n", "βœ… gpt-3.5-turbo: Machine learning is a branch of artificial intelligence that enables computers to learn from data and improve their performance on specific tasks without being explicitly programmed.\n" ] } ], "source": [ "# Model Comparison - Different OpenAI Models\n", "def test_model(model_name, prompt, temperature=0.7, max_tokens=100):\n", " \"\"\"Test different OpenAI models with the same prompt\"\"\"\n", " print(f\"\\\\nπŸ€– Testing {model_name}...\")\n", " \n", " messages = [\n", " {\"role\": \"system\", \"content\": \"You are a helpful assistant. Be concise.\"},\n", " {\"role\": \"user\", \"content\": prompt}\n", " ]\n", " \n", " try:\n", " response = openai.chat.completions.create(\n", " model=model_name,\n", " messages=messages,\n", " temperature=temperature,\n", " max_tokens=max_tokens\n", " )\n", " \n", " result = response.choices[0].message.content\n", " print(f\"βœ… {model_name}: {result}\")\n", " return result\n", " \n", " except Exception as e:\n", " print(f\"❌ {model_name}: Error - {e}\")\n", " return None\n", "\n", "# Test different models\n", "prompt = \"What is machine learning in one sentence?\"\n", "\n", "models_to_test = [\n", " \"gpt-4o-mini\",\n", " \"gpt-4o\", \n", " \"gpt-3.5-turbo\"\n", "]\n", "\n", "print(\"## Model Comparison Test\")\n", "print(\"=\"*50)\n", "\n", "results = {}\n", "for model in models_to_test:\n", " results[model] = test_model(model, prompt)\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\\n## Ollama Local Model Testing\n", "==================================================\n", "\\nπŸ¦™ Testing Ollama llama3.2...\n", "βœ… Ollama llama3.2: Machine learning is a type of artificial intelligence that enables computers to learn from data, identify patterns, and make predictions or decisions without being explicitly programmed.\n", "\\nπŸ¦™ Testing Ollama llama3.2:3b...\n", "❌ Ollama llama3.2:3b: Error - model 'llama3.2:3b' not found (status code: 404)\n", "\\nπŸ¦™ Testing Ollama llama3.2:1b...\n", "❌ Ollama llama3.2:1b: Error - model 'llama3.2:1b' not found (status code: 404)\n" ] } ], "source": [ "# Ollama Integration - Local Model Testing\n", "def test_ollama_model(model_name, prompt):\n", " \"\"\"Test Ollama models locally\"\"\"\n", " print(f\"\\\\nπŸ¦™ Testing Ollama {model_name}...\")\n", " \n", " try:\n", " response = ollama.chat(\n", " model=model_name,\n", " messages=[\n", " {\"role\": \"system\", \"content\": \"You are a helpful assistant. Be concise.\"},\n", " {\"role\": \"user\", \"content\": prompt}\n", " ]\n", " )\n", " \n", " result = response['message']['content']\n", " print(f\"βœ… Ollama {model_name}: {result}\")\n", " return result\n", " \n", " except Exception as e:\n", " print(f\"❌ Ollama {model_name}: Error - {e}\")\n", " return None\n", "\n", "# Test Ollama models\n", "print(\"\\\\n## Ollama Local Model Testing\")\n", "print(\"=\"*50)\n", "\n", "ollama_models = [\"llama3.2\", \"llama3.2:3b\", \"llama3.2:1b\"]\n", "\n", "ollama_results = {}\n", "for model in ollama_models:\n", " ollama_results[model] = test_ollama_model(model, prompt)\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Advanced web scraping functions defined!\n" ] } ], "source": [ "# Advanced Web Scraping with Selenium Fallback\n", "from selenium import webdriver\n", "from selenium.webdriver.chrome.options import Options\n", "from selenium.webdriver.chrome.service import Service\n", "from webdriver_manager.chrome import ChromeDriverManager\n", "\n", "def clean_text_from_soup(soup):\n", " \"\"\"Extract clean text from BeautifulSoup object\"\"\"\n", " if not soup or not soup.body:\n", " return \"\"\n", " for tag in soup.body([\"script\", \"style\", \"noscript\", \"template\", \"svg\", \"img\", \"video\", \"source\", \"iframe\", \"form\", \"input\"]):\n", " tag.decompose()\n", " text = soup.body.get_text(separator=\"\\\\n\", strip=True)\n", " # Collapse excessive blank lines\n", " import re\n", " text = re.sub(r\"\\\\n{3,}\", \"\\\\n\\\\n\", text)\n", " return text\n", "\n", "def is_js_heavy(html_text):\n", " \"\"\"Check if page needs JavaScript to render content\"\"\"\n", " if not html_text:\n", " return True\n", " soup = BeautifulSoup(html_text, \"html.parser\")\n", " txt_len = len(re.sub(r\"\\\\s+\", \" \", soup.get_text()))\n", " script_tags = html_text.count(\" likely JS-rendered\n", " return True\n", " if script_tags > 50 and (txt_len / (script_tags + 1)) < 40:\n", " return True\n", " if re.search(r\"(Loading|Please wait|Enable JavaScript)\", html_text, re.I):\n", " return True\n", " return False\n", "\n", "def fetch_static_html(url):\n", " \"\"\"Try to fetch HTML using requests (no JS execution)\"\"\"\n", " try:\n", " r = requests.get(url, headers={\"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36\"}, timeout=15)\n", " r.raise_for_status()\n", " return r.text\n", " except Exception:\n", " return None\n", "\n", "def fetch_js_html(url):\n", " \"\"\"Fetch HTML using Selenium (with JS execution)\"\"\"\n", " try:\n", " options = Options()\n", " options.add_argument(\"--headless\")\n", " options.add_argument(\"--no-sandbox\")\n", " options.add_argument(\"--disable-dev-shm-usage\")\n", " \n", " service = Service(ChromeDriverManager().install())\n", " driver = webdriver.Chrome(service=service, options=options)\n", " \n", " driver.get(url)\n", " time.sleep(2) # Wait for JS to execute\n", " html = driver.page_source\n", " driver.quit()\n", " return html\n", " except Exception as e:\n", " print(f\"JS fetch failed: {e}\")\n", " return None\n", "\n", "def fetch_website_contents(url, char_limit=2000, allow_js_fallback=True):\n", " \"\"\"Enhanced website content fetching with JS fallback\"\"\"\n", " html = fetch_static_html(url)\n", " need_js = (html is None) or is_js_heavy(html)\n", "\n", " if need_js and allow_js_fallback:\n", " html = fetch_js_html(url) or html or \"\"\n", "\n", " soup = BeautifulSoup(html or \"\", \"html.parser\")\n", " title = soup.title.get_text(strip=True) if soup.title else \"No title found\"\n", " text = clean_text_from_soup(soup)\n", " return (f\"{title}\\\\n\\\\n{text}\").strip()[:char_limit]\n", "\n", "print(\"Advanced web scraping functions defined!\")\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model-agnostic summarization functions defined!\n" ] } ], "source": [ "# Model-Agnostic Summarization Function\n", "def summarize_with_model(url, model=\"gpt-4o-mini\", temperature=0.4, max_tokens=None):\n", " \"\"\"Summarize website content using any available model\"\"\"\n", " website = fetch_website_contents(url, allow_js_fallback=True)\n", " \n", " system_prompt = \"\"\"\n", " You are a helpful assistant that analyzes website content\n", " and provides a clear, concise summary.\n", " Respond in markdown format. Do not wrap the markdown in a code block.\n", " \"\"\"\n", " \n", " user_prompt = f\"\"\"\n", " Here are the contents of a website.\n", " Provide a short summary of this website.\n", " If it includes news or announcements, then summarize these too.\n", "\n", " {website}\n", " \"\"\"\n", " \n", " messages = [\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt}\n", " ]\n", " \n", " try:\n", " if model.startswith(\"gpt\") or model.startswith(\"o1\"):\n", " # OpenAI model\n", " response = openai.chat.completions.create(\n", " model=model,\n", " messages=messages,\n", " temperature=temperature,\n", " max_tokens=max_tokens\n", " )\n", " return response.choices[0].message.content\n", " else:\n", " # Ollama model\n", " response = ollama.chat(\n", " model=model,\n", " messages=messages\n", " )\n", " return response['message']['content']\n", " except Exception as e:\n", " return f\"Error with {model}: {e}\"\n", "\n", "def display_summary_with_model(url, model=\"gpt-4o-mini\", **kwargs):\n", " \"\"\"Display website summary using specified model\"\"\"\n", " print(f\"πŸ” Summarizing {url} with {model}...\")\n", " summary = summarize_with_model(url, model, **kwargs)\n", " display(Markdown(f\"## Summary using {model}\\\\n\\\\n{summary}\"))\n", "\n", "print(\"Model-agnostic summarization functions defined!\")\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "## Day 2 Solution Test - Model Comparison\n", "============================================================\n", "Testing website: https://openai.com\n", "\\n============================================================\n", "\\nπŸ“Š Testing with OpenAI GPT-4o-mini...\n", "πŸ” Summarizing https://openai.com with gpt-4o-mini...\n", "❌ Error with OpenAI GPT-4o-mini: name 're' is not defined\n", "\\n----------------------------------------\n", "\\nπŸ“Š Testing with Ollama Llama 3.2 3B...\n", "πŸ” Summarizing https://openai.com with llama3.2:3b...\n", "❌ Error with Ollama Llama 3.2 3B: name 're' is not defined\n", "\\n----------------------------------------\n", "\\nπŸ“Š Testing with Ollama Llama 3.2 1B...\n", "πŸ” Summarizing https://openai.com with llama3.2:1b...\n", "❌ Error with Ollama Llama 3.2 1B: name 're' is not defined\n", "\\n----------------------------------------\n" ] } ], "source": [ "# Test Day 2 Solution - Model Comparison\n", "print(\"## Day 2 Solution Test - Model Comparison\")\n", "print(\"=\"*60)\n", "\n", "# Test with a JavaScript-heavy website\n", "test_url = \"https://openai.com\"\n", "\n", "print(f\"Testing website: {test_url}\")\n", "print(\"\\\\n\" + \"=\"*60)\n", "\n", "# Test with different models\n", "models_to_test = [\n", " (\"gpt-4o-mini\", \"OpenAI GPT-4o-mini\"),\n", " (\"llama3.2:3b\", \"Ollama Llama 3.2 3B\"),\n", " (\"llama3.2:1b\", \"Ollama Llama 3.2 1B\")\n", "]\n", "\n", "for model, description in models_to_test:\n", " print(f\"\\\\nπŸ“Š Testing with {description}...\")\n", " try:\n", " display_summary_with_model(test_url, model=model, temperature=0.4, max_tokens=200)\n", " except Exception as e:\n", " print(f\"❌ Error with {description}: {e}\")\n", " \n", " print(\"\\\\n\" + \"-\"*40)\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.12" } }, "nbformat": 4, "nbformat_minor": 2 }