Files
LLM_Engineering_OLD/community-contributions/abdoul/week_seven_exercise.ipynb
abdoulrasheed 21029a7077 W-VII
2025-10-31 01:38:50 +00:00

496 lines
15 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "GHsssBgWM_l0"
},
"source": [
"# QLoRA Fine-Tuning; LLaMA 3.1 8B"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MDyR63OTNUJ6"
},
"outputs": [],
"source": [
"import sys\n",
"print(f\"Python: {sys.version}\")\n",
"\n",
"import torch\n",
"print(f\"PyTorch: {torch.__version__}\")\n",
"print(f\"CUDA Available: {torch.cuda.is_available()}\")\n",
"print(f\"CUDA Version: {torch.version.cuda}\")\n",
"print(f\"GPU: {torch.cuda.get_device_name(0)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3_8F5m3xxMtz"
},
"outputs": [],
"source": [
"!pip install -q --upgrade transformers==4.48.3 accelerate==1.3.0 datasets==3.2.0\n",
"!pip install -q --upgrade peft==0.14.0 trl==0.14.0 bitsandbytes==0.46.0\n",
"!pip install -q --upgrade matplotlib scipy scikit-learn\n",
"!pip install -q --upgrade \"huggingface_hub<1.0,>=0.24.0\"\n",
"!pip install -q --upgrade bitsandbytes"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CpVdMBUVxMtz"
},
"source": [
"## Environment Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-yikV8pRBer9"
},
"outputs": [],
"source": [
"import os\n",
"import re\n",
"import math\n",
"import torch\n",
"import torch.nn.functional as F\n",
"import matplotlib.pyplot as plt\n",
"from tqdm import tqdm\n",
"from huggingface_hub import login\n",
"from transformers import (\n",
" AutoModelForCausalLM,\n",
" AutoTokenizer,\n",
" BitsAndBytesConfig,\n",
" set_seed\n",
")\n",
"from datasets import load_dataset\n",
"from peft import PeftModel\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "uuTX-xonNeOK"
},
"outputs": [],
"source": [
"BASE_MODEL = \"meta-llama/Meta-Llama-3.1-8B\"\n",
"DATASET_NAME = \"ed-donner/pricer-data\"\n",
"FINETUNED_MODEL = \"ed-donner/pricer-2024-09-13_13.04.39\"\n",
"REVISION = \"e8d637df551603dc86cd7a1598a8f44af4d7ae36\"\n",
"\n",
"TOP_K = 3\n",
"TEST_SIZE = 250\n",
"\n",
"GREEN = \"\\033[92m\"\n",
"YELLOW = \"\\033[93m\"\n",
"RED = \"\\033[91m\"\n",
"RESET = \"\\033[0m\"\n",
"COLOR_MAP = {\"red\": RED, \"orange\": YELLOW, \"green\": GREEN}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WyFPZeMcM88v"
},
"outputs": [],
"source": [
"from google.colab import userdata\n",
"hf_token = userdata.get('HF_TOKEN')\n",
"\n",
"login(hf_token, add_to_git_credential=True)\n",
"print(\"Successfully authenticated with HuggingFace\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qDqXth7MxMt0"
},
"source": [
"## Load Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cvXVoJH8LS6u"
},
"outputs": [],
"source": [
"print(f\"Loading dataset: {DATASET_NAME}\")\n",
"dataset = load_dataset(DATASET_NAME)\n",
"train = dataset['train']\n",
"test = dataset['test']\n",
"\n",
"print(f\"\\nDataset loaded successfully:\")\n",
"print(f\" Training examples: {len(train):,}\")\n",
"print(f\" Test examples: {len(test):,}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "xb86e__Wc7j_"
},
"outputs": [],
"source": [
"print(\"Sample test example:\\n\")\n",
"sample = test[0]\n",
"print(f\"Text: {sample['text'][:200]}...\")\n",
"print(f\"\\nGround truth price: ${sample['price']:.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qJWQ0a3wZ0Bw"
},
"source": [
"## Quantization & Model Loading\n",
"\n",
"(4-bit quantization reduces LLaMA 3.1 8B from ~32GB to ~5-6GB VRAM)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lAUAAcEC6ido"
},
"outputs": [],
"source": [
"quant_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_quant_type=\"nf4\"\n",
")\n",
"\n",
"print(\"Using 4-bit NF4 quantization\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "R_O04fKxMMT-"
},
"outputs": [],
"source": [
"print(f\"Loading base model: {BASE_MODEL}\")\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"tokenizer.padding_side = \"right\"\n",
"\n",
"base_model = AutoModelForCausalLM.from_pretrained(\n",
" BASE_MODEL,\n",
" quantization_config=quant_config,\n",
" device_map=\"auto\",\n",
")\n",
"base_model.generation_config.pad_token_id = tokenizer.pad_token_id\n",
"\n",
"print(f\"Base model loaded - Memory: {base_model.get_memory_footprint() / 1e9:.2f} GB\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "m7PHUKDVxMt1"
},
"source": [
"## Load PEFT Adapters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6_Q1fqluxMt1"
},
"outputs": [],
"source": [
"print(f\"Loading fine-tuned adapters: {FINETUNED_MODEL}\")\n",
"print(f\"Revision: {REVISION}\")\n",
"\n",
"fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION)\n",
"\n",
"print(f\"Fine-tuned model ready - Total memory: {fine_tuned_model.get_memory_footprint() / 1e9:.2f} GB\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Qst1LhBVAB04"
},
"outputs": [],
"source": [
"def extract_price(text):\n",
" if \"Price is $\" in text:\n",
" content = text.split(\"Price is $\")[1]\n",
" content = content.replace(',', '').replace('$', '')\n",
" match = re.search(r\"[-+]?\\d*\\.?\\d+\", content)\n",
" return float(match.group()) if match else 0.0\n",
" return 0.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jXFBW_5UeEcp"
},
"outputs": [],
"source": [
"test_cases = [\n",
" \"Price is $24.99\",\n",
" \"Price is $1,234.50\",\n",
" \"Price is $a fabulous 899.99 or so\"\n",
"]\n",
"\n",
"for test in test_cases:\n",
" result = extract_price(test)\n",
" print(f\"{test} -> ${result:.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TTy_WAGexMt2"
},
"source": [
"## Prediction Function\n",
"\n",
"Top-K weighted averaging computes probability-weighted average of top K tokens."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Je5dR8QEAI1d"
},
"outputs": [],
"source": [
"def advanced_predict(prompt, top_k=TOP_K):\n",
" set_seed(42)\n",
" inputs = tokenizer.encode(prompt, return_tensors=\"pt\").to(\"cuda\")\n",
" attention_mask = torch.ones(inputs.shape, device=\"cuda\")\n",
"\n",
" with torch.no_grad():\n",
" outputs = fine_tuned_model(inputs, attention_mask=attention_mask)\n",
" next_token_logits = outputs.logits[:, -1, :].to('cpu')\n",
"\n",
" next_token_probs = F.softmax(next_token_logits, dim=-1)\n",
" top_probs, top_token_ids = next_token_probs.topk(top_k)\n",
"\n",
" prices, weights = [], []\n",
"\n",
" for i in range(top_k):\n",
" predicted_token = tokenizer.decode(top_token_ids[0][i])\n",
" probability = top_probs[0][i]\n",
"\n",
" try:\n",
" price = float(predicted_token)\n",
" if price > 0:\n",
" prices.append(price)\n",
" weights.append(probability)\n",
" except ValueError:\n",
" continue\n",
"\n",
" if not prices:\n",
" return 0.0\n",
"\n",
" total_weight = sum(weights)\n",
" weighted_avg = sum(p * w / total_weight for p, w in zip(prices, weights))\n",
"\n",
" return weighted_avg.item()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7nI3Ec7exMt2"
},
"source": [
"## Evaluation Framework\n",
"\n",
"Metrics:\n",
"- Dollar Error: |prediction - truth|\n",
"- RMSLE: Root Mean Squared Log Error (penalizes relative errors)\n",
"- Hit Rate: Percentage in green zone (error < $40 OR < 20% of true price)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "30lzJXBH7BcK"
},
"outputs": [],
"source": [
"class Tester:\n",
"\n",
" def __init__(self, predictor, data, title=None, size=TEST_SIZE):\n",
" self.predictor = predictor\n",
" self.data = data\n",
" self.title = title or predictor.__name__.replace(\"_\", \" \").title()\n",
" self.size = min(size, len(data))\n",
" self.guesses = []\n",
" self.truths = []\n",
" self.errors = []\n",
" self.sles = []\n",
" self.colors = []\n",
"\n",
" def color_for(self, error, truth):\n",
" if error < 40 or error / truth < 0.2:\n",
" return \"green\"\n",
" elif error < 80 or error / truth < 0.4:\n",
" return \"orange\"\n",
" else:\n",
" return \"red\"\n",
"\n",
" def run_datapoint(self, i):\n",
" datapoint = self.data[i]\n",
" guess = self.predictor(datapoint[\"text\"])\n",
" truth = datapoint[\"price\"]\n",
" error = abs(guess - truth)\n",
"\n",
" log_error = math.log(truth + 1) - math.log(guess + 1)\n",
" sle = log_error ** 2\n",
"\n",
" color = self.color_for(error, truth)\n",
" title = datapoint[\"text\"].split(\"\\n\\n\")[1][:30] + \"...\"\n",
"\n",
" self.guesses.append(guess)\n",
" self.truths.append(truth)\n",
" self.errors.append(error)\n",
" self.sles.append(sle)\n",
" self.colors.append(color)\n",
"\n",
" print(f\"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} | Truth: ${truth:,.2f} | Error: ${error:,.2f} | SLE: {sle:,.3f} | {title}{RESET}\")\n",
"\n",
" def chart(self, title):\n",
" plt.figure(figsize=(14, 10))\n",
" max_val = max(max(self.truths), max(self.guesses))\n",
"\n",
" plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=3, alpha=0.7, label='Perfect prediction')\n",
" plt.scatter(self.truths, self.guesses, s=20, c=self.colors, alpha=0.6)\n",
"\n",
" plt.xlabel('Ground Truth Price ($)', fontsize=12)\n",
" plt.ylabel('Model Prediction ($)', fontsize=12)\n",
" plt.xlim(0, max_val)\n",
" plt.ylim(0, max_val)\n",
" plt.title(title, fontsize=14, fontweight='bold')\n",
" plt.grid(alpha=0.3)\n",
" plt.legend()\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
" def report(self):\n",
" average_error = sum(self.errors) / self.size\n",
" rmsle = math.sqrt(sum(self.sles) / self.size)\n",
" hits = sum(1 for color in self.colors if color == \"green\")\n",
" hit_rate = hits / self.size * 100\n",
"\n",
" title = f\"{self.title} | Avg Error: ${average_error:,.2f} | RMSLE: {rmsle:.3f} | Hit Rate: {hit_rate:.1f}%\"\n",
"\n",
" print(f\"\\n{'='*80}\")\n",
" print(f\"EVALUATION SUMMARY\")\n",
" print(f\"{'='*80}\")\n",
" print(f\"Model: {self.title}\")\n",
" print(f\"Test Size: {self.size}\")\n",
" print(f\"Average Dollar Error: ${average_error:,.2f}\")\n",
" print(f\"RMSLE: {rmsle:.4f}\")\n",
" print(f\"Hit Rate (Green): {hit_rate:.2f}% ({hits}/{self.size})\")\n",
" print(f\"{'='*80}\\n\")\n",
"\n",
" self.chart(title)\n",
"\n",
" def run(self):\n",
" print(f\"Running evaluation on {self.size} examples...\\n\")\n",
" for i in tqdm(range(self.size), desc=\"Evaluating\"):\n",
" self.run_datapoint(i)\n",
" self.report()\n",
"\n",
" @classmethod\n",
" def test(cls, function, data, **kwargs):\n",
" cls(function, data, **kwargs).run()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "krjnRyHO4Fp6"
},
"outputs": [],
"source": [
"print(f\"Loading dataset: {DATASET_NAME}\")\n",
"dataset = load_dataset(DATASET_NAME)\n",
"train = dataset['train']\n",
"test = dataset['test']\n",
"\n",
"print(f\"\\nDataset loaded successfully:\")\n",
"print(f\" Training examples: {len(train):,}\")\n",
"print(f\" Test examples: {len(test):,}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5JjNwXMDxMt2"
},
"source": [
"## Run Evaluation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "W_KcLvyt6kbb"
},
"outputs": [],
"source": [
"Tester.test(advanced_predict, test, title=\"LLaMA 3.1 8B QLoRA (400K)\")"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}