Files

331 lines
9.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "70a27b7c-3f3c-4d82-bdea-381939ce98bd",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"# My Adverserial Conversation\n",
"J. McInerney, 26 May 2025\n",
"I am taking some cells from the Week2, Day 1 notebook and modifying them so I can have an adverserial conversation between OpenAI and a local LLM (gemma3:12b). First I will just reimplement what Ed did in the Week2, Day 1 notebook. Then I will try a deeper conversation."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ec14834-4cf2-4f1d-9128-4ddad7b91804",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"#import anthropic\n",
"from IPython.display import Markdown, display, update_display"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98618ab4-075f-438c-b85b-d146e5299a87",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"# Print the key prefixes to help with any debugging\n",
"\n",
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95e69172-4601-4eb0-a7af-19abebd4bf56",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"# Connect to OpenAI, Anthropic\n",
"openai = OpenAI()"
]
},
{
"cell_type": "markdown",
"id": "98f47886-71ae-4b41-875a-1b97a5eb0ddc",
"metadata": {},
"source": [
"## An adversarial conversation between Chatbots..\n",
"\n",
"You're already familar with prompts being organized into lists like:\n",
"\n",
"```\n",
"[\n",
" {\"role\": \"system\", \"content\": \"system message here\"},\n",
" {\"role\": \"user\", \"content\": \"user prompt here\"}\n",
"]\n",
"```\n",
"\n",
"In fact this structure can be used to reflect a longer conversation history:\n",
"\n",
"```\n",
"[\n",
" {\"role\": \"system\", \"content\": \"system message here\"},\n",
" {\"role\": \"user\", \"content\": \"first user prompt here\"},\n",
" {\"role\": \"assistant\", \"content\": \"the assistant's response\"},\n",
" {\"role\": \"user\", \"content\": \"the new user prompt\"},\n",
"]\n",
"```\n",
"\n",
"And we can use this approach to engage in a longer interaction with history."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74125f8b-042e-4236-ad3d-6371ce5a1493",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"# Let's make a conversation between GPT-4o-mini and Gemma3:12b\n",
"# We're using cheap versions of models so the costs will be minimal\n",
"\n",
"gpt_model = \"gpt-4o-mini\"\n",
"local_model = 'gemma3:12b'\n",
"\n",
"gpt_system = \"You are a chatbot who is very argumentative; \\\n",
"you disagree with anything in the conversation and you challenge everything, in a snarky way.\"\n",
"\n",
"local_system = \"You are a very polite, courteous chatbot. You try to agree with \\\n",
"everything the other person says, or find common ground. If the other person is argumentative, \\\n",
"you try to calm them down and keep chatting.\"\n",
"\n",
"gpt_messages = [\"Hi there\"]\n",
"local_messages = [\"Hi\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f94d9232-f82a-4eab-9d89-bd9815f260f0",
"metadata": {},
"outputs": [],
"source": [
"def call_gpt():\n",
" messages = [{\"role\": \"system\", \"content\": gpt_system}]\n",
" for gpt, local in zip(gpt_messages, local_messages):\n",
" messages.append({\"role\": \"assistant\", \"content\": gpt})\n",
" messages.append({\"role\": \"user\", \"content\": local})\n",
" completion = openai.chat.completions.create(\n",
" model=gpt_model,\n",
" messages=messages\n",
" )\n",
" return completion.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6445453-31be-4c63-b350-957b7d99b6f4",
"metadata": {},
"outputs": [],
"source": [
"call_gpt()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc51f776-f6e2-41af-acb5-cbdf03fdf530",
"metadata": {},
"outputs": [],
"source": [
"basellm = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
"def call_local():\n",
" messages = []\n",
" for gpt, local_message in zip(gpt_messages, local_messages):\n",
" messages.append({\"role\": \"user\", \"content\": gpt})\n",
" messages.append({\"role\": \"assistant\", \"content\": local_message})\n",
" messages.append({\"role\": \"user\", \"content\": gpt_messages[-1]})\n",
" \n",
" completion = basellm.chat.completions.create(\n",
" model=local_model,\n",
" messages=messages\n",
" )\n",
" \n",
" return completion.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16fd90cb-ebfd-4a4f-ae49-70568ae8fbb1",
"metadata": {},
"outputs": [],
"source": [
"call_local()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "429eeefb-f080-4a57-8f2d-ff3d4237afab",
"metadata": {},
"outputs": [],
"source": [
"call_gpt()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ce847ed-521d-4be5-895b-44088de499e1",
"metadata": {},
"outputs": [],
"source": [
"gpt_messages = [\"Hi there\"]\n",
"local_messages = [\"Hi\"]\n",
"\n",
"print(f\"GPT:\\n{gpt_messages[0]}\\n\")\n",
"print(f\"local:\\n{local_messages[0]}\\n\")\n",
"\n",
"for i in range(5):\n",
" gpt_next = call_gpt()\n",
" print(f\"GPT:\\n{gpt_next}\\n\")\n",
" gpt_messages.append(gpt_next)\n",
" \n",
" local_next = call_local()\n",
" print(f\"local:\\n{local_next}\\n\")\n",
" local_messages.append(local_next)"
]
},
{
"cell_type": "markdown",
"id": "d3b1707a-2903-4529-b6eb-95a874a14e78",
"metadata": {},
"source": [
"## Let's try a more thoughful conversation\n",
"The two chatbots will engage in a friendly discussion on whether the US should have entered World War I in 1917. They are both open minded so they can learn from each other."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "abb733bf-a5d3-4718-8741-8e8abfd3a088",
"metadata": {},
"outputs": [],
"source": [
"# Let's make a conversation between GPT-4o-mini and Gemma3:12b\n",
"# We're using cheap versions of models so the costs will be minimal\n",
"\n",
"gpt_system = \"You are a chatbot who believes it was a mistake for the US to enter World War I; \\\n",
"you are open to other arguments, but you feel the evidence suggests the world would have been \\\n",
"better off if the US had stayed isolationalist. You consider counter arguments but also express \\\n",
"your own arguments.\"\n",
"\n",
"local_system = \"You are a chatbot who believes the US made the right decision entering World War I in \\\n",
"1917. Overall, the world is a better place for it. You are open minded but believe the evidence \\\n",
"supports this view. You consider counter arguments but also express your own arguments.\"\n",
"\n",
"gpt_messages = [\"It was such a mistake for the US to enter WWI\"]\n",
"local_messages = [\"Why do you say that?\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "569e18a3-25cd-46d5-8edb-713ff149d008",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"print(f\"GPT:\\n{gpt_messages[0]}\\n\")\n",
"print(f\"local:\\n{local_messages[0]}\\n\")\n",
"\n",
"for i in range(5):\n",
" gpt_next = call_gpt()\n",
" print(f\"GPT:\\n{gpt_next}\\n\")\n",
" gpt_messages.append(gpt_next)\n",
" \n",
" local_next = call_local()\n",
" print(f\"local:\\n{local_next}\\n\")\n",
" local_messages.append(local_next)"
]
},
{
"cell_type": "markdown",
"id": "d29df7da-eaa3-4c98-b913-05185b62cffe",
"metadata": {},
"source": [
"## Conclusion\n",
"I am amazed at how insightful this conversation was. Not only did they explore all the pros and cons, they began applying those lessons to current day foreign policy. This looks like a very good way to explore a topic. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b486b2d6-40da-4745-8cbf-1afd2be22caa",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}