Files
LLM_Engineering_OLD/week1/community-contributions/W1D5_Code_instructor.ipynb

270 lines
8.5 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"id": "0e5dc476-e3c9-49bd-934a-35dbe0d55b13",
"metadata": {},
"source": [
"# End of week 1 exercise (with user input(question, model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "353fba18-a9b4-4ba8-be7e-f3e3c37521ff",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import requests\n",
"from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI\n",
"import ollama"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "be2b859d-b3d2-41f7-8666-28ecde26e3b8",
"metadata": {},
"outputs": [],
"source": [
"# set up environment and constants\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n",
" print(\"API key looks good so far\")\n",
"else:\n",
" print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1b2b694-11a1-4d2a-8e34-d1fb02617fa3",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"You are an expert coder with educational skills for beginners. \\\n",
"You are able to explain, debbug or generate code in Python, R or bash, and to provide examples of use case if applicable. \\\n",
"Please add references to relevant sources if available. If not, do not invent.\\n\"\n",
"system_prompt += \"this is an example of a response:\"\n",
"system_prompt += \"\"\"\n",
"Sure! Heres the explanation in plain text format, suitable for Markdown:\n",
"\n",
"# Explanation of the Code\n",
"\n",
"### Code:\n",
"```python\n",
"full_name = lambda first, last: f'Full name: {first.title()} {last.title()}'\n",
"```\n",
"\n",
"### Explanation:\n",
"\n",
"1. **Lambda Function:**\n",
" - The keyword `lambda` is used to create a small, one-line anonymous function (a function without a name).\n",
" - It takes two parameters: `first` (for the first name) and `last` (for the last name).\n",
"\n",
"2. **String Formatting (`f-string`):**\n",
" - `f'Full name: {first.title()} {last.title()}'` is a formatted string (f-string).\n",
" - It inserts the values of `first` and `last` into the string while applying `.title()` to capitalize the first letter of each name.\n",
"\n",
"3. **Assigning the Function:**\n",
" - The lambda function is assigned to the variable `full_name`, so we can use `full_name()` like a regular function.\n",
"\n",
"### How to Use It:\n",
"Now, lets call this function and see what it does.\n",
"\n",
"```python\n",
"print(full_name(\"john\", \"doe\"))\n",
"```\n",
"\n",
"#### Output:\n",
"```\n",
"Full name: John Doe\n",
"```\n",
"\n",
"### What Happens:\n",
"- `\"john\"` becomes `\"John\"` (because `.title()` capitalizes the first letter).\n",
"- `\"doe\"` becomes `\"Doe\"`.\n",
"- The output is `\"Full name: John Doe\"`.\n",
"\n",
"### Summary:\n",
"This is a simple way to create a function that formats a full name while ensuring proper capitalization. You could write the same function using `def` like this:\n",
"\n",
"```python\n",
"def full_name(first, last):\n",
" return f'Full name: {first.title()} {last.title()}'\n",
"```\n",
"\n",
"Both versions work the same way, but the `lambda` version is more compact.\n",
"\n",
"### Reference(s):\n",
"To deepen your understanding of the code snippet involving Python's lambda functions here is a resource you might find helpful:\n",
"\n",
"Ref. **Python Lambda Functions:**\n",
" - The official Python documentation provides an in-depth explanation of lambda expressions, including their syntax and use cases.\n",
" - [Lambda Expressions](https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions)\n",
"\n",
"```\n",
"You can copy and paste this into any Markdown file or viewer. Let me know if you need further modifications! 😊\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f7225ab0-5ade-4c93-839c-3c80b0b23c37",
"metadata": {},
"outputs": [],
"source": [
"# display(Markdown(system_prompt))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "07fa2506-4b24-4a53-9f3f-500b4cbcb10a",
"metadata": {},
"outputs": [],
"source": [
"# user question\n",
"default_question= \"\"\"\n",
"Please explain what this code does and why:\n",
"yield from {book.get('author') from book in books if book.get('author')}\n",
"\"\"\"\n",
"user_question= str(input(\"What code do you want me to explain?/n(Press 'Enter' for an example)\"))\n",
"\n",
"if user_question== '':\n",
" question= default_question\n",
" print(default_question)\n",
"else:\n",
" question= \"Please explain what this code does and why:\\n\" + user_question"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6749065-fb8a-4f9f-8297-3cd33abd97bd",
"metadata": {},
"outputs": [],
"source": [
"print(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f48df06c-edb7-4a05-9e56-910854dad0c7",
"metadata": {},
"outputs": [],
"source": [
"# user model\n",
"model_number= input(\"\"\"\n",
"Please enter the number of the model you want to use from the list below:\n",
"1 GPT-4o Mini\n",
"2 Llama 3.2\n",
"3 DeepSeek R1\n",
"4 Qwen 2.5\n",
"\"\"\")\n",
"try:\n",
" if int(model_number)==1:\n",
" model= 'gpt-4o-mini'\n",
" elif int(model_number)==2:\n",
" model= 'llama3.2'\n",
" elif int(model_number)==3:\n",
" model= 'deepseek-r1:1.5b'\n",
" elif int(model_number)==4:\n",
" model= 'qwen2.5:3b'\n",
" else:\n",
" model= ''\n",
" print(\"please provide only a number from the list\")\n",
"except:\n",
" model=''\n",
" print(\"Please provide a number or press 'Enter' to finish\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aeb6e4e5-fb63-4192-bb74-0b015dfedfb7",
"metadata": {},
"outputs": [],
"source": [
"# print(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fffa6021-d3f8-4855-a694-bed6d651791f",
"metadata": {},
"outputs": [],
"source": [
"messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": question}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "835374a4-3df5-4f28-82e3-6bc70514df16",
"metadata": {},
"outputs": [],
"source": [
"if int(model_number)==1:\n",
" openai= OpenAI()\n",
" stream = openai.chat.completions.create(\n",
" model=model,\n",
" messages=messages,\n",
" stream= True\n",
" )\n",
"\n",
" response = \"\"\n",
" print(\"The following answer will be generated by {0} LLM\".format(model))\n",
" display_handle = display(Markdown(\"\"), display_id=True)\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
" update_display(Markdown(response), display_id=display_handle.display_id)\n",
"elif int(model_number)==2 or 3 or 4:\n",
" !ollama pull {model}\n",
" print(\"\\n\\nThe following answer will be generated by {0} LLM\\n\\n\".format(model))\n",
" response = ollama.chat(\n",
" model=model,\n",
" messages = messages)\n",
" result= response['message']['content']\n",
" display(Markdown(result))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}