Files
2025-09-24 21:19:17 +12:00

289 lines
8.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9",
"metadata": {},
"source": [
"# Unit test Generator\n",
"\n",
"Create unit tests on the Python code"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"from google import genai\n",
"from google.genai import types\n",
"import anthropic\n",
"import ollama\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f672e1c-87e9-4865-b760-370fa605e614",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv(override=True)\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
"metadata": {},
"outputs": [],
"source": [
"# initialize\n",
"\n",
"openai = OpenAI()\n",
"claude = anthropic.Anthropic()\n",
"client = genai.Client()\n",
"\n",
"\n",
"OPENAI_MODEL = \"gpt-4o\"\n",
"CLAUDE_MODEL = \"claude-sonnet-4-20250514\"\n",
"GEMINI_MODEL = 'gemini-2.5-flash'\n",
"LLAMA_MODEL = \"llama3.2\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6896636f-923e-4a2c-9d6c-fac07828a201",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"\"\"\n",
"You are an effective programming assistant specialized to generate Python code based on the inputs.\n",
"Respond only with Python code; use comments sparingly and do not provide any explanation other than occasional comments.\n",
"Do not include Markdown formatting (```), language tags (python), or extra text \\n.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e7b3546-57aa-4c29-bc5d-f211970d04eb",
"metadata": {},
"outputs": [],
"source": [
"def user_prompt_for_unit_test(python):\n",
" user_prompt = f\"\"\"\n",
" Consider the following Python code: \\n\\n\n",
" {python} \\n\\n\n",
"\n",
" Generate a unit test around this code and it alongside with the Python code. \\n\n",
" Response rule: in your response do not include Markdown formatting (```), language tags (python), or extra text.\n",
"\n",
" \"\"\"\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
"metadata": {},
"outputs": [],
"source": [
"def messages_for_unit_test(python):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": user_prompt_for_unit_test(python)}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c3b497b3-f569-420e-b92e-fb0f49957ce0",
"metadata": {},
"outputs": [],
"source": [
"python_hard = \"\"\"\n",
"\n",
"def lcg(seed, a=1664525, c=1013904223, m=2**32):\n",
" value = seed\n",
" while True:\n",
" value = (a * value + c) % m\n",
" yield value\n",
"\n",
"def max_subarray_sum(n, seed, min_val, max_val):\n",
" lcg_gen = lcg(seed)\n",
" random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n",
" max_sum = float('-inf')\n",
" for i in range(n):\n",
" current_sum = 0\n",
" for j in range(i, n):\n",
" current_sum += random_numbers[j]\n",
" if current_sum > max_sum:\n",
" max_sum = current_sum\n",
" return max_sum\n",
"\n",
"def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n",
" total_sum = 0\n",
" lcg_gen = lcg(initial_seed)\n",
" for _ in range(20):\n",
" seed = next(lcg_gen)\n",
" total_sum += max_subarray_sum(n, seed, min_val, max_val)\n",
" return total_sum\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0be9f47d-5213-4700-b0e2-d444c7c738c0",
"metadata": {},
"outputs": [],
"source": [
"def stream_gpt(python):\n",
" stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for_unit_test(python), stream=True)\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" fragment = chunk.choices[0].delta.content or \"\"\n",
" reply += fragment\n",
" yield reply"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8669f56b-8314-4582-a167-78842caea131",
"metadata": {},
"outputs": [],
"source": [
"def stream_claude(python):\n",
" result = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=2000,\n",
" system=system_message,\n",
" messages=[{\"role\": \"user\", \"content\": user_prompt_for_unit_test(python)}],\n",
" )\n",
" reply = \"\"\n",
" with result as stream:\n",
" for text in stream.text_stream:\n",
" reply += text\n",
" yield reply"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97205162",
"metadata": {},
"outputs": [],
"source": [
"def stream_gemini(python):\n",
" response = client.models.generate_content_stream(\n",
" model=GEMINI_MODEL,\n",
" config=types.GenerateContentConfig(\n",
" system_instruction=system_message),\n",
" contents=user_prompt_for_unit_test(python)\n",
" )\n",
"\n",
" reply = \"\"\n",
" for chunk in response:\n",
" fragment = chunk.text or \"\"\n",
" reply += fragment\n",
" yield reply\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f94b13e",
"metadata": {},
"outputs": [],
"source": [
"def stream_llama_local(python):\n",
" stream = ollama.chat(\n",
" model='llama3.2',\n",
" messages=messages_for_unit_test(python),\n",
" stream=True,\n",
" )\n",
"\n",
" reply = \"\"\n",
" # Iterate through the streamed chunks and print the content\n",
" for chunk in stream:\n",
" #print(chunk['message']['content'], end='', flush=True)\n",
" if 'content' in chunk['message']:\n",
" fragment = chunk['message']['content']\n",
" reply += fragment\n",
" yield reply\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d",
"metadata": {},
"outputs": [],
"source": [
"def generate_unit_test(python, model):\n",
" if model==\"GPT\":\n",
" result = stream_gpt(python)\n",
" elif model==\"Claude\":\n",
" result = stream_claude(python)\n",
" elif model==\"Gemini\":\n",
" result = stream_gemini(python)\n",
" elif model==\"Llama\":\n",
" result = stream_llama_local(python)\n",
"\n",
" else:\n",
" raise ValueError(\"Unknown model\")\n",
" for stream_so_far in result:\n",
" yield stream_so_far"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1ddb38e-6b0a-4c37-baa4-ace0b7de887a",
"metadata": {},
"outputs": [],
"source": [
"with gr.Blocks() as ui:\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python code:\", lines=10, value=python_hard)\n",
" unit_test = gr.Textbox(label=\"Unit test\", lines=10)\n",
" with gr.Row():\n",
" model = gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\", \"Llama\"], label=\"Select model\", value=\"GPT\")\n",
" generate_ut = gr.Button(\"Generate Unit tests\")\n",
"\n",
" generate_ut.click(generate_unit_test, inputs=[python, model], outputs=[unit_test])\n",
"\n",
"ui.launch(inbrowser=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}