Files

334 lines
8.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Personal Knowledge Worker\n",
"\n",
"Search through your exported Notion Workspace with Gemini models using RAG.\n",
"\n",
"How to export the content from Notion: https://www.notion.com/help/export-your-content"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports and Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install -U -q langchain-google-genai"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import re\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import DirectoryLoader, TextLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.schema import Document\n",
"from langchain_chroma import Chroma\n",
"from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"LLM_MODEL = \"gemini-2.5-flash-lite\"\n",
"EMBEDDINGS_MODEL = \"models/gemini-embedding-001\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"load_dotenv()\n",
"os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Vector DB Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Clean up and Load Documents"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Clean up the Notion directory, remove MD5 hashes from filenames and directory names\n",
"\n",
"# Root directory of your export\n",
"root_dir = \"notion_export\"\n",
"\n",
"# Regex to match the hash: space + 24-32 hex chars (sometimes longer)\n",
"hash_pattern = re.compile(r\"\\s[0-9a-f]{16,32}(_all)?\")\n",
"\n",
"for dirpath, dirnames, filenames in os.walk(root_dir, topdown=False):\n",
" # Rename files\n",
" for filename in filenames:\n",
" new_name = re.sub(hash_pattern, \"\", filename)\n",
" if new_name != filename:\n",
" old_path = os.path.join(dirpath, filename)\n",
" new_path = os.path.join(dirpath, new_name)\n",
" print(f\"Renaming file: {old_path} -> {new_path}\")\n",
" os.rename(old_path, new_path)\n",
"\n",
" # Rename directories\n",
" for dirname in dirnames:\n",
" new_name = re.sub(hash_pattern, \"\", dirname)\n",
" if new_name != dirname:\n",
" old_path = os.path.join(dirpath, dirname)\n",
" new_path = os.path.join(dirpath, new_name)\n",
" print(f\"Renaming dir: {old_path} -> {new_path}\")\n",
" os.rename(old_path, new_path)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Read in documents using LangChain's loaders\n",
"\n",
"documents = []\n",
"for dirpath, dirnames, filenames in os.walk(root_dir):\n",
" # Define doc_type relative to root_dir\n",
" doc_type = os.path.relpath(dirpath, root_dir)\n",
"\n",
" # for main pages in Notion\n",
" if doc_type == \".\":\n",
" doc_type = \"Main\"\n",
" \n",
" loader = DirectoryLoader(\n",
" dirpath,\n",
" glob=\"**/*.md\", # recursive match inside dirpath\n",
" loader_cls=TextLoader\n",
" )\n",
" \n",
" folder_docs = loader.load()\n",
" for doc in folder_docs:\n",
" doc.metadata[\"doc_type\"] = doc_type\n",
" documents.append(doc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create chunks"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=200)\n",
"chunks = text_splitter.split_documents(documents)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(chunks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"doc_types = set(chunk.metadata['doc_type'] for chunk in chunks)\n",
"print(f\"Document types found: {', '.join(doc_types)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = GoogleGenerativeAIEmbeddings(model=EMBEDDINGS_MODEL)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If you don't want to recreate the collection\n",
"\n",
"vectorstore = Chroma(embedding_function=embeddings, persist_directory=db_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check if a Chroma Datastore already exists - if so, delete the collection to start from scratch\n",
"\n",
"if os.path.exists(db_name):\n",
" Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n",
"\n",
"# Create our Chroma vectorstore!\n",
"\n",
"vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
"print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get one vector and find how many dimensions it has\n",
"\n",
"collection = vectorstore._collection\n",
"sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n",
"dimensions = len(sample_embedding)\n",
"print(f\"The vectors have {dimensions:,} dimensions\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RAG pipeline using LangChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create a new Chat with ChatGoogleGenerativeAI\n",
"llm = ChatGoogleGenerativeAI(model=LLM_MODEL, temperature=0.7)\n",
"\n",
"# set up the conversation memory for the chat\n",
"memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
"\n",
"# the retriever is an abstraction over the VectorStore that will be used during RAG\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# putting it together: set up the conversation chain with the GPT 4o-mini LLM, the vector store and memory\n",
"conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Gradio User Interface"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" result = conversation_chain.invoke({\"question\": message})\n",
" return result[\"answer\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 4
}