Files
LLM_Engineering_OLD/week6/community-contributions/ems_week6_day4_gemini_results.ipynb

314 lines
9.2 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"id": "db8736a7-ed94-441c-9556-831fa57b5a10",
"metadata": {},
"source": [
"# The Product Pricer Continued...\n",
"\n",
"## Testing Gemini-1.5-pro model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "681c717b-4c24-4ac3-a5f3-3c5881d6e70a",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import re\n",
"from dotenv import load_dotenv\n",
"import matplotlib.pyplot as plt\n",
"import pickle\n",
"import google.generativeai as google_genai\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "21a3833e-4093-43b0-8f7b-839c50b911ea",
"metadata": {},
"outputs": [],
"source": [
"from items import Item\n",
"from testing import Tester "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "36d05bdc-0155-4c72-a7ee-aa4e614ffd3c",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"load_dotenv()\n",
"os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0a6fb86-74a4-403c-ab25-6db2d74e9d2b",
"metadata": {},
"outputs": [],
"source": [
"google_genai.configure()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c830ed3e-24ee-4af6-a07b-a1bfdcd39278",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c9b05f4-c9eb-462c-8d86-de9140a2d985",
"metadata": {},
"outputs": [],
"source": [
"# Load in the pickle files that are located in the `pickled_dataset` folder\n",
"with open('train.pkl', 'rb') as file:\n",
" train = pickle.load(file)\n",
"\n",
"with open('test.pkl', 'rb') as file:\n",
" test = pickle.load(file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc5c807b-c14c-458e-8cca-32bc0cc5b7c3",
"metadata": {},
"outputs": [],
"source": [
"# Function to create the messages format required for Gemini 1.5 Pro\n",
"# This function prepares the system and user messages in the format expected by Gemini models.\n",
"def gemini_messages_for(item):\n",
" system_message = \"You estimate prices of items. Reply only with the price, no explanation\"\n",
" \n",
" # Modify the test prompt by removing \"to the nearest dollar\" and \"Price is $\"\n",
" # This ensures that the model receives a cleaner, simpler prompt.\n",
" user_prompt = item.test_prompt().replace(\" to the nearest dollar\", \"\").replace(\"\\n\\nPrice is $\", \"\")\n",
"\n",
" # Reformat messages to Geminis expected format: messages = [{'role':'user', 'parts': ['hello']}]\n",
" return [\n",
" {\"role\": \"system\", \"parts\": [system_message]}, # System-level instruction\n",
" {\"role\": \"user\", \"parts\": [user_prompt]}, # User's query\n",
" {\"role\": \"model\", \"parts\": [\"Price is $\"]} # Assistant's expected prefix for response\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6da66bb-bc4b-49ad-9224-a388470ef20b",
"metadata": {},
"outputs": [],
"source": [
"# Example usage of the gemini_messages_for function\n",
"gemini_messages_for(test[0]) # Generate message structure for the first test item"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1af1888-f94a-4106-b0d8-8a70939eec4e",
"metadata": {},
"outputs": [],
"source": [
"# Utility function to extract the numerical price from a given string\n",
"# This function removes currency symbols and commas, then extracts the first number found.\n",
"def get_price(s):\n",
" s = s.replace('$', '').replace(',', '') # Remove currency symbols and formatting\n",
" match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", s) # Regular expression to find a number\n",
" return float(match.group()) if match else 0 # Convert matched value to float, return 0 if no match"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a053c1a9-f86e-427c-a6be-ed8ec7bd63a5",
"metadata": {},
"outputs": [],
"source": [
"# Example usage of get_price function\n",
"get_price(\"The price is roughly $99.99 because blah blah\") # Expected output: 99.99"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "34a88e34-1719-4d08-adbe-adb69dfe5e83",
"metadata": {},
"outputs": [],
"source": [
"# Function to get the estimated price using Gemini 1.5 Pro\n",
"def gemini_1_point_5_pro(item):\n",
" messages = gemini_messages_for(item) # Generate messages for the model\n",
" system_message = messages[0]['parts'][0] # Extract system-level instruction\n",
" user_messages = messages[1:] # Remove system message from messages list\n",
" \n",
" # Initialize Gemini 1.5 Pro model with system instruction\n",
" gemini = google_genai.GenerativeModel(\n",
" model_name=\"gemini-1.5-pro\",\n",
" system_instruction=system_message\n",
" )\n",
"\n",
" # Generate response using Gemini API\n",
" response = gemini.generate_content(\n",
" contents=user_messages,\n",
" generation_config=google_genai.GenerationConfig(max_output_tokens=5)\n",
" )\n",
"\n",
" # Extract text response and convert to numerical price\n",
" return get_price(response.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d89b10bb-8ebb-42ef-9146-f6e64e6849f9",
"metadata": {},
"outputs": [],
"source": [
"# Example usage:\n",
"gemini_1_point_5_pro(test[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89ad07e6-a28a-4625-b61e-d2ce12d440fc",
"metadata": {},
"outputs": [],
"source": [
"# Retrieve the actual price of the test item (for comparison)\n",
"test[0].price # Output: 374.41"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "384f28e5-e51f-4cd3-8d74-30a8275530db",
"metadata": {},
"outputs": [],
"source": [
"# Test the function for gemini-1.5 pro using the Tester framework\n",
"Tester.test(gemini_1_point_5_pro, test)"
]
},
{
"cell_type": "markdown",
"id": "9b627291-b02e-48dd-9130-703498135ddf",
"metadata": {},
"source": [
"## Five, Gemini-2.0-flash"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ee393a9-7afd-404f-92f2-a64bb4d5fb8b",
"metadata": {},
"outputs": [],
"source": [
"# Function to get the estimated price using Gemini-2.0-flash-exp\n",
"def gemini_2_point_0_flash_exp(item):\n",
" messages = gemini_messages_for(item) # Generate messages for the model\n",
" system_message = messages[0]['parts'][0] # Extract system-level instruction\n",
" user_messages = messages[1:] # Remove system message from messages list\n",
" \n",
" # Initialize Gemini-2.0-flash-exp model with system instruction\n",
" gemini = google_genai.GenerativeModel(\n",
" model_name=\"gemini-2.0-flash-exp\",\n",
" system_instruction=system_message\n",
" )\n",
"\n",
" # Adding a delay to avoid hitting the API rate limit and getting a \"ResourceExhausted: 429\" error\n",
" time.sleep(5)\n",
" \n",
" # Generate response using Gemini API\n",
" response = gemini.generate_content(\n",
" contents=user_messages,\n",
" generation_config=google_genai.GenerationConfig(max_output_tokens=5)\n",
" )\n",
"\n",
" # Extract text response and convert to numerical price\n",
" return get_price(response.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "203dc6f1-309e-46eb-9957-e06eed803cc8",
"metadata": {},
"outputs": [],
"source": [
"# Example usage:\n",
"gemini_2_point_0_flash_exp(test[0]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a844df09-d347-40b9-bb79-006ec4160aab",
"metadata": {},
"outputs": [],
"source": [
"# Retrieve the actual price of the test item (for comparison)\n",
"test[0].price # Output: 374.41"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "500b45c7-e5c1-44f2-95c9-1c3c06365339",
"metadata": {},
"outputs": [],
"source": [
"# Test the function for gemini-2.0-flash-exp using the Tester framework\n",
"Tester.test(gemini_2_point_0_flash_exp, test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "746b2d12-ba92-48e2-9065-c9a108d1593b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}