Files
2025-10-28 22:23:18 +01:00

38 lines
1.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "8fa27a71",
"metadata": {},
"source": [
"# Week 7 Exercise: Fine-Tuning Gemma 3 Open Source LLM for Price Prediction\n",
"\n",
"## Project Overview\n",
"Fine-tuning an open-source Large Language Model to predict product prices based on textual descriptions.\n",
"\n",
"## Base Model\n",
"unsloth/gemma-3-4b-it\n",
"\n",
"## Dataset\n",
"ed-donner/pricer-data\n",
"\n",
"## Fine Tuning Details\n",
"* Fine-tuning Approach: LoRA (Low-Rank Adaptation)\n",
"* Target modules: All attention and MLP layers\n",
"* Framework: Unsloth + TRL (Transformer Reinforcement Learning)\n",
"* Chat template formatting for consistent input structure\n",
"* 4-bit quantization for memory-efficient training\n",
"\n",
"link to colab notebook : https://colab.research.google.com/drive/1sCQQ_OoR2kd1ASivfbUQx-lIE-wHIT6s?usp=sharing\n"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 5
}