Files
2025-04-30 19:48:45 +05:00

542 lines
13 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "40d49349-faaa-420c-9b65-0bdc9edfabce",
"metadata": {},
"source": [
"# The Price is Right\n",
"\n",
"## Finishing off with Random Forests, XG Boost & Ensemble"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6cd8b15e-f88a-470d-a9a6-b6370effaff9",
"metadata": {},
"outputs": [],
"source": [
"!pip install xgboost"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fbcdfea8-7241-46d7-a771-c0381a3e7063",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import re\n",
"import math\n",
"import json\n",
"from tqdm import tqdm\n",
"import random\n",
"from dotenv import load_dotenv\n",
"from huggingface_hub import login\n",
"import numpy as np\n",
"import pickle\n",
"from openai import OpenAI\n",
"from sentence_transformers import SentenceTransformer\n",
"from datasets import load_dataset\n",
"import chromadb\n",
"from items import Item\n",
"from testing import Tester\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"import joblib\n",
"import xgboost as xgb"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e6e88bd1-f89c-4b98-92fa-aa4bc1575bca",
"metadata": {},
"outputs": [],
"source": [
"# CONSTANTS\n",
"\n",
"DB = \"products_vectorstore\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98666e73-938e-469d-8987-e6e55ba5e034",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv(override=True)\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc696493-0b6f-48aa-9fa8-b1ae0ecaf3cd",
"metadata": {},
"outputs": [],
"source": [
"# Load in the test pickle file:\n",
"\n",
"with open('test.pkl', 'rb') as file:\n",
" test = pickle.load(file)\n",
" \n",
"# training data is already in Chroma"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d26a1104-cd11-4361-ab25-85fb576e0582",
"metadata": {},
"outputs": [],
"source": [
"client = chromadb.PersistentClient(path=DB)\n",
"collection = client.get_or_create_collection('products')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e00b82a9-a8dc-46f1-8ea9-2f07cbc8e60d",
"metadata": {},
"outputs": [],
"source": [
"result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n",
"vectors = np.array(result['embeddings'])\n",
"documents = result['documents']\n",
"prices = [metadata['price'] for metadata in result['metadatas']]"
]
},
{
"cell_type": "markdown",
"id": "bf6492cb-b11a-4ad5-859b-a71a78ffb949",
"metadata": {},
"source": [
"# Random Forest\n",
"\n",
"We will now train a Random Forest model.\n",
"\n",
"Can you spot the difference from what we did in Week 6? In week 6 we used the word2vec model to form vectors; this time we'll use the vectors we already have in Chroma, from the SentenceTransformer model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48894777-101f-4fe5-998c-47079407f340",
"metadata": {},
"outputs": [],
"source": [
"# This next line takes an hour on my M1 Mac!\n",
"\n",
"rf_model = RandomForestRegressor(n_estimators=100, random_state=42, n_jobs=-1)\n",
"rf_model.fit(vectors, prices)"
]
},
{
"cell_type": "markdown",
"id": "90a07dde-6f57-4488-8d08-e8e5646754e7",
"metadata": {},
"source": [
"n_job = -1 means it is using every core"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62eb7ddf-e1da-481e-84c6-1256547566bd",
"metadata": {},
"outputs": [],
"source": [
"# Save the model to a file\n",
"\n",
"joblib.dump(rf_model, 'random_forest_model.pkl')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d281dc5e-761e-4a5e-86b3-29d9c0a33d4a",
"metadata": {},
"outputs": [],
"source": [
"# Load it back in again\n",
"\n",
"rf_model = joblib.load('random_forest_model.pkl')"
]
},
{
"cell_type": "markdown",
"id": "23760bf5-fe52-473d-bfbe-def6b7a67a77",
"metadata": {},
"source": [
"# XG Boost Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c65dcfb9-d2c1-431c-843d-c5908bc39e3f",
"metadata": {},
"outputs": [],
"source": [
"train_dmatrix = xgb.DMatrix(vectors, label=prices)\n",
"\n",
"params = {\n",
" \"objective\": \"reg:squarederror\",\n",
" \"max_depth\": 6,\n",
" \"learning_rate\": 0.1,\n",
" \"nthread\": -1,\n",
" \"verbosity\": 1,\n",
" \"subsample\": 0.8,\n",
"}\n",
"\n",
"model = xgb.train(params, train_dmatrix, num_boost_round=100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6980ca7-fc38-482c-8346-80c435058886",
"metadata": {},
"outputs": [],
"source": [
"joblib.dump(model,'xg_boost_model.pkl')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0605f48-04f8-44a3-8d8c-c7be4cd840b2",
"metadata": {},
"outputs": [],
"source": [
"xgb_model = joblib.load('xg_boost_model.pkl')"
]
},
{
"cell_type": "markdown",
"id": "22d10315-2b11-43b0-b042-679a2814dea1",
"metadata": {},
"source": [
"# Agents"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d438dec-8e5b-4e60-bb6f-c3f82e522dd9",
"metadata": {},
"outputs": [],
"source": [
"from agents.specialist_agent import SpecialistAgent\n",
"from agents.frontier_agent import FrontierAgent\n",
"from agents.random_forest_agent import RandomForestAgent\n",
"from agents.xg_boost_agent import XGBoostAgent"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "afc39369-b97b-4a90-b17e-b20ef501d3c9",
"metadata": {},
"outputs": [],
"source": [
"specialist = SpecialistAgent()\n",
"frontier = FrontierAgent(collection)\n",
"random_forest = RandomForestAgent()\n",
"xg_boost = XGBoostAgent()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e2d0d0a-8bb8-4b39-b046-322828c39244",
"metadata": {},
"outputs": [],
"source": [
"def description(item):\n",
" return item.prompt.split(\"to the nearest dollar?\\n\\n\")[1].split(\"\\n\\nPrice is $\")[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfe0434f-b29e-4cc0-bad9-b07624665727",
"metadata": {},
"outputs": [],
"source": [
"def rf(item):\n",
" return random_forest.price(description(item))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cdf233ec-264f-4b34-9f2b-27c39692137b",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"Tester.test(rf, test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "192b94ac-37d0-4569-bc7c-8fc4f92d129b",
"metadata": {},
"outputs": [],
"source": [
"def xg_b(item):\n",
" return xg_boost.price(description(item))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3fa01c2-42d9-4ce7-ae36-1d874a0003c1",
"metadata": {},
"outputs": [],
"source": [
"xg_b(test[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9183aab7-0586-4d43-b212-c40442c7ab34",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"Tester.test(xg_b, test)"
]
},
{
"cell_type": "markdown",
"id": "0045825e-2df0-429a-8ebb-2617517a2e75",
"metadata": {},
"source": [
"# Moving towards the ensemble model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f759bd2-7a7e-4c1a-80a0-e12470feca89",
"metadata": {},
"outputs": [],
"source": [
"product = \"Quadcast HyperX condenser mic for high quality audio for podcasting\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e44dbd25-fb95-4b6b-bbbb-8da5fc817105",
"metadata": {},
"outputs": [],
"source": [
"print(specialist.price(product))\n",
"print(frontier.price(product))\n",
"print(random_forest.price(product))\n",
"print(xg_boost.price(product))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1779b353-e2bb-4fc7-be7c-93057e4d688a",
"metadata": {},
"outputs": [],
"source": [
"specialists = []\n",
"frontiers = []\n",
"random_forests = []\n",
"xg_boosts = []\n",
"prices = []\n",
"\n",
"for item in tqdm(test[1000:1250]):\n",
" text = description(item)\n",
" specialists.append(specialist.price(text))\n",
" frontiers.append(frontier.price(text))\n",
" random_forests.append(random_forest.price(text))\n",
" xg_boosts.append(xg_boost.price(text))\n",
" prices.append(item.price)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0bca725-4e34-405b-8d90-41d67086a25d",
"metadata": {},
"outputs": [],
"source": [
"mins = [min(s,f,r,x) for s,f,r,x in zip(specialists, frontiers, random_forests, xg_boosts)]\n",
"maxes = [max(s,f,r,x) for s,f,r,x in zip(specialists, frontiers, random_forests, xg_boosts)]\n",
"\n",
"X = pd.DataFrame({\n",
" 'Specialist': specialists,\n",
" 'Frontier': frontiers,\n",
" 'RandomForest': random_forests,\n",
" 'XGBoost' : xg_boosts,\n",
" 'Min': mins,\n",
" 'Max': maxes,\n",
"})\n",
"\n",
"# Convert y to a Series\n",
"y = pd.Series(prices)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "baac4947-02d8-4d12-82ed-9ace3c0bee39",
"metadata": {},
"outputs": [],
"source": [
"# Train a Linear Regression - current\n",
"np.random.seed(42)\n",
"\n",
"lr = LinearRegression()\n",
"lr.fit(X, y)\n",
"\n",
"feature_columns = X.columns.tolist()\n",
"\n",
"for feature, coef in zip(feature_columns, lr.coef_):\n",
" print(f\"{feature}: {coef:.2f}\")\n",
"print(f\"Intercept={lr.intercept_:.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "702de4cb-2311-4753-9c05-f3a0fa7e9990",
"metadata": {},
"outputs": [],
"source": [
"# Train a Linear Regression - old vals w/o xg\n",
"np.random.seed(42)\n",
"\n",
"lr = LinearRegression()\n",
"lr.fit(X, y)\n",
"\n",
"feature_columns = X.columns.tolist()\n",
"\n",
"for feature, coef in zip(feature_columns, lr.coef_):\n",
" print(f\"{feature}: {coef:.2f}\")\n",
"print(f\"Intercept={lr.intercept_:.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0bdf6e68-28a3-4ed2-b17e-de0ede923d34",
"metadata": {},
"outputs": [],
"source": [
"joblib.dump(lr, 'ensemble_model.pkl')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e762441a-9470-4dd7-8a8f-ec0430e908c7",
"metadata": {},
"outputs": [],
"source": [
"from agents.ensemble_agent import EnsembleAgent\n",
"ensemble = EnsembleAgent(collection)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a29f03c-8010-43b7-ae7d-1bc85ca6e8e2",
"metadata": {},
"outputs": [],
"source": [
"ensemble.price(product) #old val"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "13dbf002-eba6-4c7a-898f-d697f68ca28e",
"metadata": {},
"outputs": [],
"source": [
"ensemble.price(product)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e6a5e226-a508-43d5-aa42-cefbde72ffdf",
"metadata": {},
"outputs": [],
"source": [
"def ensemble_pricer(item):\n",
" return max(0,ensemble.price(description(item)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8397b1ef-2ea3-4af8-bb34-36594e0600cc",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"Tester.test(ensemble_pricer, test) #old "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d26c9ff-994b-4799-af51-09d00ddc0c06",
"metadata": {},
"outputs": [],
"source": [
"Tester.test(ensemble_pricer, test)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}