203 lines
5.7 KiB
Plaintext
203 lines
5.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
|
|
"metadata": {},
|
|
"source": [
|
|
"# End of week 1 exercise\n",
|
|
"\n",
|
|
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
|
|
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c1070317-3ed9-4659-abe3-828943230e03",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# imports\n",
|
|
"\n",
|
|
"import os\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"from IPython.display import Markdown, display, update_display\n",
|
|
"from openai import OpenAI\n",
|
|
"import ollama"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# constants\n",
|
|
"\n",
|
|
"MODEL_GPT = 'gpt-4o-mini'\n",
|
|
"MODEL_LLAMA = 'llama3.2'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# set up environment\n",
|
|
"\n",
|
|
"load_dotenv(override=True)\n",
|
|
"api_key = os.getenv('OPENAI_API_KEY')\n",
|
|
"\n",
|
|
"# Check the key\n",
|
|
"\n",
|
|
"if not api_key:\n",
|
|
" print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
|
|
"elif not api_key.startswith(\"sk-proj-\"):\n",
|
|
" print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
|
|
"elif api_key.strip() != api_key:\n",
|
|
" print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
|
|
"else:\n",
|
|
" print(\"API key found and looks good so far!\")\n",
|
|
"\n",
|
|
"openai = OpenAI()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# here is the question; type over this to ask something new\n",
|
|
"\n",
|
|
"question = \"\"\"\n",
|
|
"Please explain what this code does and why:\n",
|
|
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
|
|
"\"\"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1f879b7e-5ecc-4ec6-b269-78b6e2ed3480",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# prompts\n",
|
|
"\n",
|
|
"system_prompt = \"You are a helpful tutor who answers technical questions about programming code(especially python code), software engineering, data science and LLMs\"\n",
|
|
"user_prompt = \"Please give a detailed explanation to the following question: \" + question"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4ac74ae5-af61-4a5d-b991-554fa67cd3d1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"messages = [\n",
|
|
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
|
" {\"role\": \"user\", \"content\": user_prompt}\n",
|
|
" ]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "60ce7000-a4a5-4cce-a261-e75ef45063b4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get gpt-4o-mini to answer, with streaming\n",
|
|
"stream = openai.chat.completions.create(\n",
|
|
" model=MODEL_GPT,\n",
|
|
" messages=messages,\n",
|
|
" stream=True\n",
|
|
" )\n",
|
|
" \n",
|
|
"response = \"\"\n",
|
|
"display_handle = display(Markdown(\"\"), display_id=True)\n",
|
|
"for chunk in stream:\n",
|
|
" response += chunk.choices[0].delta.content or ''\n",
|
|
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
|
|
" update_display(Markdown(response), display_id=display_handle.display_id)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get Llama 3.2 to answer\n",
|
|
"\n",
|
|
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
|
|
"HEADERS = {\"Content-Type\": \"application/json\"}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4bd10d96-ee72-4c86-acd8-4fa417c25960",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!ollama pull llama3.2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d889d514-0478-4d7f-aabf-9a7bc743adb1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"stream = ollama.chat(model=MODEL_LLAMA, messages=messages, stream=True)\n",
|
|
"\n",
|
|
"response = \"\"\n",
|
|
"display_handle = display(Markdown(\"\"), display_id=True)\n",
|
|
"for chunk in stream:\n",
|
|
" response += chunk.get(\"message\", {}).get(\"content\", \"\")\n",
|
|
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
|
|
" update_display(Markdown(response), display_id=display_handle.display_id)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "452d442a-f3b0-42ad-89d2-a8dc664e8bb6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.13"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|