Files
LLM_Engineering_OLD/week1/community-contributions/week1_tennis.ipynb
2025-08-09 11:33:38 +03:00

155 lines
4.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
"metadata": {},
"source": [
"# End of week 1 exercise\n",
"\n",
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
]
},
{
"cell_type": "markdown",
"id": "0ea775a9-12c7-4a63-a676-d7bd0cdb100c",
"metadata": {},
"source": [
"# imports\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI\n",
"import ollama"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
"metadata": {},
"outputs": [],
"source": [
"# constants\n",
"MODEL_GPT = 'gpt-4o-mini'\n",
"MODEL_LLAMA = 'llama3.2'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
"metadata": {},
"outputs": [],
"source": [
"# set up environment\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if not api_key:\n",
" print(\"No API key was found!\")\n",
"else:\n",
" print(\"API key found and looks good so far!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
"metadata": {},
"outputs": [],
"source": [
"# here is the question\n",
"question = \"\"\"\n",
"Please explain why do tennis players often use topspin on their forehand shots, and what advantages does it provide?\n",
"\"\"\" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "967aac6b-9f9c-4def-8659-d9382b0c59e4",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"You are a helpful tennis coach who answers questions about tennis rules, techniques, strategies, training, and equipment.\"\n",
"user_prompt = \"Please give a detailed explanation to the following question: \" + question"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7936b5af-e912-4e0e-b43e-87673c4857cf",
"metadata": {},
"outputs": [],
"source": [
"messages = [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "60ce7000-a4a5-4cce-a261-e75ef45063b4",
"metadata": {},
"outputs": [],
"source": [
"# Get gpt-4o-mini to answer, with streaming\n",
"openai = OpenAI()\n",
"stream = openai.chat.completions.create(model=MODEL_GPT, messages=messages, stream=True)\n",
"response = \"\"\n",
"display_handle = display(Markdown(\"\"), display_id=True)\n",
"for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
" update_display(Markdown(response), display_id=display_handle.display_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
"metadata": {},
"outputs": [],
"source": [
"# Get Llama 3.2 to answer\n",
"response = ollama.chat(model=MODEL_LLAMA, messages=messages)\n",
"result = response['message']['content']\n",
"display(Markdown(result))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "29e9cdd3-5adc-4428-9758-f761dc91783a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}