202 lines
5.9 KiB
Plaintext
202 lines
5.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
|
|
"metadata": {},
|
|
"source": [
|
|
"# End of week 1 exercise\n",
|
|
"\n",
|
|
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
|
|
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c1070317-3ed9-4659-abe3-828943230e03",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# imports\n",
|
|
"import os\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"\n",
|
|
"from IPython.display import Markdown, display, update_display\n",
|
|
"from openai import OpenAI"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# constants\n",
|
|
"\n",
|
|
"MODEL_GPT = 'gpt-4o-mini'\n",
|
|
"MODEL_LLAMA = 'llama3.2'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# set up environment\n",
|
|
"load_dotenv(override=True)\n",
|
|
"api_key = os.getenv(\"OPENAI_API_KEY\")\n",
|
|
"\n",
|
|
"# set up clients\n",
|
|
"openai = OpenAI()\n",
|
|
"ollama = OpenAI(base_url=\"http://localhost:11434/v1\" , api_key=\"ollama\")\n",
|
|
"\n",
|
|
"# set up system prompt\n",
|
|
"system_prompt = \"You are a coding tutor. If the user asks you a question, answer it to the point. If you are asked to create a code snippet, generate the code in Python and then explain it shortly.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 53,
|
|
"id": "58f098cb-4b4e-4394-b0b5-29db88e9101c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def send_request(user_prompt, model=MODEL_LLAMA, stream=False):\n",
|
|
" message = [{\"role\": \"system\", \"content\": system_prompt}, {\"role\": \"user\", \"content\": user_prompt}]\n",
|
|
" if model.startswith(\"gpt\"):\n",
|
|
" model_client = openai\n",
|
|
" else:\n",
|
|
" model_client = ollama\n",
|
|
"\n",
|
|
" \n",
|
|
" response = model_client.chat.completions.create(\n",
|
|
" model=model,\n",
|
|
" messages=message,\n",
|
|
" stream=stream\n",
|
|
" )\n",
|
|
"\n",
|
|
" if stream:\n",
|
|
" streaming = \"\"\n",
|
|
" display_handle = display(Markdown(\"\"), display_id=True)\n",
|
|
" for chunk in response:\n",
|
|
" streaming += chunk.choices[0].delta.content or ''\n",
|
|
" streaming = streaming.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
|
|
" update_display(Markdown(streaming), display_id=display_handle.display_id)\n",
|
|
"\n",
|
|
" else:\n",
|
|
" return display(Markdown(response.choices[0].message.content))\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 49,
|
|
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdin",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" How can I display python code properly while streaming the answer from openai? Create a code snippet for this. The streaming should happen in the code canvas.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# here is the question; type over this to ask something new\n",
|
|
"question = input()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 48,
|
|
"id": "2bc093fa-b2ff-47e9-8ea8-e41499385116",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# question = \"\"\"How can I display python code properly while streaming the answer from openai? Create a code snippet for this. The streaming should happen in the code canvas.\"\"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "60ce7000-a4a5-4cce-a261-e75ef45063b4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get gpt-4o-mini to answer, with streaming\n",
|
|
"send_request(model=MODEL_GPT, user_prompt=question, stream=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 54,
|
|
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/markdown": [
|
|
"To display Python code properly with OpenAI's chat interface, you'll need to use the `code` formatting in the response format provided by the API endpoint. \n",
|
|
"\n",
|
|
"Here's an example of how you can modify the API request URL to include the formatted code:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"import requests\n",
|
|
"import json\n",
|
|
"\n",
|
|
"query = {\n",
|
|
" \"text\": \"{\\n} # Python code here\\n}\"\n",
|
|
"\n",
|
|
"headers = {\n",
|
|
" 'Content-Type': 'application/json'\n",
|
|
"}\n",
|
|
"\n",
|
|
"response = requests.post('https://api.openai.com/v1/answers', data=json.dumps(query), headers=headers)\n",
|
|
"\n",
|
|
"answer = response.json()\n",
|
|
"```\n",
|
|
"\n",
|
|
"However, the most convenient way to display the code is by using the `code` directive directly in your chat prompt. OpenAI will automatically format and highlight your code."
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Markdown object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Get Llama 3.2 to answer\n",
|
|
"send_request(user_prompt=question)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|