147 lines
5.3 KiB
Python
147 lines
5.3 KiB
Python
from enum import Enum
|
|
from pathlib import Path
|
|
|
|
|
|
class Model(Enum):
|
|
"""
|
|
Enumeration of supported AI models.
|
|
"""
|
|
OPENAI_MODEL = "gpt-4o"
|
|
CLAUDE_MODEL = "claude-3-5-sonnet-20240620"
|
|
|
|
|
|
def get_system_message() -> str:
|
|
"""
|
|
Generate a system message for AI assistants creating docstrings.
|
|
|
|
:return: A string containing instructions for the AI assistant.
|
|
:rtype: str
|
|
"""
|
|
system_message = "You are an assistant that creates doc strings in reStructure Text format for an existing python function. "
|
|
system_message += "Respond only with an updated python function; use comments sparingly and do not provide any explanation other than occasional comments. "
|
|
system_message += "Be sure to include typing annotation for each function argument or key word argument and return object types."
|
|
|
|
return system_message
|
|
|
|
|
|
def user_prompt_for(python: str) -> str:
|
|
"""
|
|
Generate a user prompt for rewriting Python functions with docstrings.
|
|
|
|
:param python: The Python code to be rewritten.
|
|
:type python: str
|
|
:return: A string containing the user prompt and the Python code.
|
|
:rtype: str
|
|
"""
|
|
user_prompt = "Rewrite this Python function with doc strings in the reStructuredText style."
|
|
user_prompt += "Respond only with python code; do not explain your work other than a few comments. "
|
|
user_prompt += "Be sure to write a description of the function purpose with typing for each argument and return\n\n"
|
|
user_prompt += python
|
|
return user_prompt
|
|
|
|
|
|
def messages_for(python: str, system_message: str) -> list:
|
|
"""
|
|
Create a list of messages for the AI model.
|
|
|
|
:param python: The Python code to be processed.
|
|
:type python: str
|
|
:param system_message: The system message for the AI assistant.
|
|
:type system_message: str
|
|
:return: A list of dictionaries containing role and content for each message.
|
|
:rtype: list
|
|
"""
|
|
return [
|
|
{"role": "system", "content": system_message},
|
|
{"role": "user", "content": user_prompt_for(python)}
|
|
]
|
|
|
|
|
|
def write_output(output: str, file_suffix: str, file_path: Path) -> None:
|
|
"""
|
|
Write the processed output to a file.
|
|
|
|
:param output: The processed Python code with docstrings.
|
|
:type output: str
|
|
:param file_suffix: The suffix to be added to the output file name.
|
|
:type file_suffix: str
|
|
:param file_path: The path of the input file.
|
|
:type file_path: Path
|
|
:return: None
|
|
"""
|
|
code = output.replace("", "").replace("", "")
|
|
out_file = file_path.with_name(f"{file_path.stem}{file_suffix if file_suffix else ''}.py")
|
|
out_file.write_text(code)
|
|
|
|
|
|
def add_doc_string(client: object, system_message: str, file_path: Path, model: str) -> None:
|
|
"""
|
|
Add docstrings to a Python file using the specified AI model.
|
|
|
|
:param client: The AI client object.
|
|
:type client: object
|
|
:param system_message: The system message for the AI assistant.
|
|
:type system_message: str
|
|
:param file_path: The path of the input Python file.
|
|
:type file_path: Path
|
|
:param model: The AI model to be used.
|
|
:type model: str
|
|
:return: None
|
|
"""
|
|
if 'gpt' in model:
|
|
add_doc_string_gpt(client=client, system_message=system_message, file_path=file_path, model=model)
|
|
else:
|
|
add_doc_string_claude(client=client, system_message=system_message, file_path=file_path, model=model)
|
|
|
|
|
|
def add_doc_string_gpt(client: object, system_message: str, file_path: Path, model: str = 'gpt-4o') -> None:
|
|
"""
|
|
Add docstrings to a Python file using GPT model.
|
|
|
|
:param client: The OpenAI client object.
|
|
:type client: object
|
|
:param system_message: The system message for the AI assistant.
|
|
:type system_message: str
|
|
:param file_path: The path of the input Python file.
|
|
:type file_path: Path
|
|
:param model: The GPT model to be used, defaults to 'gpt-4o'.
|
|
:type model: str
|
|
:return: None
|
|
"""
|
|
code_text = file_path.read_text(encoding='utf-8')
|
|
stream = client.chat.completions.create(model=model, messages=messages_for(code_text, system_message), stream=True)
|
|
reply = ""
|
|
for chunk in stream:
|
|
fragment = chunk.choices[0].delta.content or ""
|
|
reply += fragment
|
|
print(fragment, end='', flush=True)
|
|
write_output(reply, file_suffix='_gpt', file_path=file_path)
|
|
|
|
|
|
def add_doc_string_claude(client: object, system_message: str, file_path: Path, model: str = 'claude-3-5-sonnet-20240620') -> None:
|
|
"""
|
|
Add docstrings to a Python file using Claude model.
|
|
|
|
:param client: The Anthropic client object.
|
|
:type client: object
|
|
:param system_message: The system message for the AI assistant.
|
|
:type system_message: str
|
|
:param file_path: The path of the input Python file.
|
|
:type file_path: Path
|
|
:param model: The Claude model to be used, defaults to 'claude-3-5-sonnet-20240620'.
|
|
:type model: str
|
|
:return: None
|
|
"""
|
|
code_text = file_path.read_text(encoding='utf-8')
|
|
result = client.messages.stream(
|
|
model=model,
|
|
max_tokens=2000,
|
|
system=system_message,
|
|
messages=[{"role": "user", "content": user_prompt_for(code_text)}],
|
|
)
|
|
reply = ""
|
|
with result as stream:
|
|
for text in stream.text_stream:
|
|
reply += text
|
|
print(text, end="", flush=True)
|
|
write_output(reply, file_suffix='_claude', file_path=file_path) |