167 lines
7.6 KiB
Plaintext
167 lines
7.6 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "638fc220-1cf5-49d8-a3c6-d425c759cd05",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ‹ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ™ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ¹ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ¸ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ¼ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ´ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ¦ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â § \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ‡ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â <C3A2> \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest â ‹ \u001b[K\u001b[?25h\u001b[?2026l\u001b[?2026h\u001b[?25l\u001b[1Gpulling manifest \u001b[K\n",
|
||
"pulling dde5aa3fc5ff: 100% ▕██████████████████â–<C3A2> 2.0 GB \u001b[K\n",
|
||
"pulling 966de95ca8a6: 100% ▕██████████████████â–<C3A2> 1.4 KB \u001b[K\n",
|
||
"pulling fcc5a6bec9da: 100% ▕██████████████████â–<C3A2> 7.7 KB \u001b[K\n",
|
||
"pulling a70ff7e570d9: 100% ▕██████████████████â–<C3A2> 6.0 KB \u001b[K\n",
|
||
"pulling 56bb8bd477a5: 100% ▕██████████████████â–<C3A2> 96 B \u001b[K\n",
|
||
"pulling 34bb5ab01051: 100% ▕██████████████████â–<C3A2> 561 B \u001b[K\n",
|
||
"verifying sha256 digest \u001b[K\n",
|
||
"writing manifest \u001b[K\n",
|
||
"success \u001b[K\u001b[?25h\u001b[?2026l\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"ChatCompletion(id='chatcmpl-238', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None))], created=1758556881, model='llama3.2', object='chat.completion', service_tier=None, system_fingerprint='fp_ollama', usage=CompletionUsage(completion_tokens=1, prompt_tokens=36, total_tokens=37, completion_tokens_details=None, prompt_tokens_details=None))\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# openai = OpenAI()\n",
|
||
"# You need to do this one time on your computer\n",
|
||
"!ollama pull llama3.2\n",
|
||
"\n",
|
||
"# from openai import OpenAI\n",
|
||
"# MODEL = \"llama3.2\"\n",
|
||
"# openai = OpenAI(base_url=\"http://localhost:11434/v1\", api_key=\"ollama\")\n",
|
||
"\n",
|
||
"# response = openai.chat.completions.create(\n",
|
||
"# model=MODEL,\n",
|
||
"# messages=[{\"role\": \"system\", \"content\": \"Respond concisely, use bullet points\"},{\"role\": \"user\", \"content\": \"give information about a proper diet\"}]\n",
|
||
"# )\n",
|
||
"\n",
|
||
"# print(response.choices[0].message.content)\n",
|
||
"# print(response)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "1fdff8c6-6a30-4cfa-aa59-385737af9536",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/markdown": [
|
||
"Here are key points about a proper diet:\n",
|
||
"\n",
|
||
"**General Guidelines**\n",
|
||
"\n",
|
||
"* Focus on whole, unprocessed foods\n",
|
||
"* Include a variety of colors and food groups\n",
|
||
"* Aim for balance and moderation\n",
|
||
"\n",
|
||
"**Food Groups**\n",
|
||
"\n",
|
||
"* **Fruits**:\n",
|
||
"\t+ 2-3 servings a day (fresh, frozen, canned)\n",
|
||
"\t+ Include berries, citrus fruits, and stone fruits\n",
|
||
"* **Vegetables**:\n",
|
||
"\t+ 5-7 servings a day (fresh, frozen, canned)\n",
|
||
"\t+ Include dark leafy greens, bell peppers, carrots, and tomatoes\n",
|
||
"* **Protein**:\n",
|
||
"\t+ 2-3 servings a day (lean meats, fish, eggs, dairy, legumes)\n",
|
||
"\t+ Choose whole grains over refined protein sources\n",
|
||
"* **Whole Grains**:\n",
|
||
"\t+ 6-8 servings a day (brown rice, quinoa, whole wheat, oats)\n",
|
||
"\t+ Choose whole grain breads, pasta, and cereals\n",
|
||
"* **Dairy/Calcium**:\n",
|
||
"\t+ 2-3 servings a day (milk, cheese, yogurt)\n",
|
||
"\t+ Choose low-fat or fat-free options\n",
|
||
"* **Healthy Fats**:\n",
|
||
"\t+ Nuts and seeds (almonds, walnuts, chia seeds)\n",
|
||
"\t+ Avocados (1-2 servings a week)\n",
|
||
"\n",
|
||
"**Additional Tips**\n",
|
||
"\n",
|
||
"* Limit sugary drinks and added sugars\n",
|
||
"* Aim for 8 cups of water a day\n",
|
||
"* Incorporate healthy snacks, such as fruits, nuts, and carrot sticks with hummus\n",
|
||
"* Cook at home using fresh ingredients and minimal added oils\n",
|
||
"* Be mindful of portion sizes and calorie intake\n",
|
||
"\n",
|
||
"**Dietary Restrictions**\n",
|
||
"\n",
|
||
"* Consider vegan, vegetarian, gluten-free or low-carb diets if necessary\n",
|
||
"* Consult a healthcare professional or registered dietitian for personalized guidance"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Markdown object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"from openai import OpenAI\n",
|
||
"MODEL = \"llama3.2\"\n",
|
||
"from IPython.display import Markdown, display\n",
|
||
"openai = OpenAI(base_url=\"http://localhost:11434/v1\", api_key=\"ollama\")\n",
|
||
"\n",
|
||
"response = openai.chat.completions.create(\n",
|
||
" model=MODEL,\n",
|
||
" messages=[{\"role\": \"system\", \"content\": \"Respond concisely, use bullet points\"},{\"role\": \"user\", \"content\": \"give information about a proper diet\"}]\n",
|
||
")\n",
|
||
"\n",
|
||
"# print(response.choices[0].message.content)\n",
|
||
"# print(response)\n",
|
||
"\n",
|
||
"display(Markdown(response.choices[0].message.content))\n",
|
||
"# print(response.choices[0].message.content)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "075f490e-2a66-42b2-afa1-84e9ccaf5b77",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "6524ce52-dfbc-453b-9871-185d5f9a9d04",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.11.13"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|