294 lines
8.5 KiB
Plaintext
294 lines
8.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e3a5643a-c247-4a9b-8c57-ec9b1e89c088",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Week 2 - eCommerce Assistant for products price from dictionary\n",
|
|
"\n",
|
|
"An eCommerce assitant that can get a product price\n",
|
|
"\n",
|
|
"Gradio for chat box"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "756573b3-72b2-4102-a773-91c278e5c4fd",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# !ollama pull llama3.2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "57ae8d30-f7aa-47a3-bab8-b7002e87a8f7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# imports\n",
|
|
"\n",
|
|
"import os\n",
|
|
"import json\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"from openai import OpenAI\n",
|
|
"import gradio as gr"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "ef7f8b2b-1d6a-4bbd-858a-be187ccfc02a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Initialization\n",
|
|
"\n",
|
|
"load_dotenv(override=True)\n",
|
|
"\n",
|
|
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
|
"if openai_api_key:\n",
|
|
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
|
"else:\n",
|
|
" print(\"OpenAI API Key not set\")\n",
|
|
" \n",
|
|
"MODEL = \"gpt-4o-mini\"\n",
|
|
"openai = OpenAI()\n",
|
|
"\n",
|
|
"# As an alternative, if you'd like to use Ollama instead of OpenAI\n",
|
|
"# Check that Ollama is running for you locally (see week1/day2 exercise) then uncomment these next 2 lines\n",
|
|
"# MODEL = \"llama3.2\"\n",
|
|
"# openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7b46dd52-8a3c-42d1-ac24-59f5eb5aaba1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"system_message = \"You are a helpful assistant for an online store called CommerceAI. \"\n",
|
|
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n",
|
|
"system_message += \"Always be accurate. If you don't know the answer, say so.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "31a6431b-215d-4f46-b813-971d8af7e034",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n",
|
|
"\n",
|
|
"def chat(message, history):\n",
|
|
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
|
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
|
|
" return response.choices[0].message.content\n",
|
|
"\n",
|
|
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d3586bfb-acc3-4b5e-95be-02120b696f98",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Tools\n",
|
|
"\n",
|
|
"Tools are an incredibly powerful feature provided by the frontier LLMs.\n",
|
|
"\n",
|
|
"With tools, you can write a function, and have the LLM call that function as part of its response.\n",
|
|
"\n",
|
|
"Sounds almost spooky.. we're giving it the power to run code on our machine?\n",
|
|
"\n",
|
|
"Well, kinda."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c9ac43e8-9880-44f6-b03a-6d1ab05bbb94",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Let's start by making a useful function\n",
|
|
"\n",
|
|
"items_prices = {f\"item{i}\": f\"{i*100}\" for i in range(1,6)}\n",
|
|
"\n",
|
|
"items_prices = {\"printer\": \"$500\", \"paper\": \"$10\", \"mini printer\": \"$50\", \"label printer\": \"$60\", \"sticker-paper\": \"$5\"}\n",
|
|
"\n",
|
|
"def get_item_price(product):\n",
|
|
" print(f\"Tool get_item_price called for {product}\")\n",
|
|
" item = product.lower()\n",
|
|
" return items_prices.get(item, \"Unknown\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "88d249f7-787d-4750-b5b9-7df108da1b57",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"items_prices"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "ef3c3897-9a57-4f04-b5d0-f9ac8bb02d00",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"get_item_price(\"mini printer\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "511ef9b8-bec0-4f14-b647-057e14c849cc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# There's a particular dictionary structure that's required to describe our function:\n",
|
|
"\n",
|
|
"price_function = {\n",
|
|
" \"name\": \"get_item_price\",\n",
|
|
" \"description\": \"Get the price of an item in the store. \\\n",
|
|
" Call this whenever you need to know the store item price , \\\n",
|
|
" for example when a customer asks 'How much is a mini printer' \",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"product\": {\n",
|
|
" \"type\": \"string\",\n",
|
|
" \"description\": \"The item that the customer wants to buy\"\n",
|
|
" },\n",
|
|
" },\n",
|
|
" \"required\": [\"product\"],\n",
|
|
" \"additionalProperties\": False\n",
|
|
" }\n",
|
|
"}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "86f674a4-4b7c-443d-b025-0f016932508a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# And this is included in a list of tools:\n",
|
|
"\n",
|
|
"tools = [{\"type\": \"function\", \"function\": price_function}]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "724d0f89-8a86-493e-8cd1-73814688a70b",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Getting OpenAI to use our Tool\n",
|
|
"\n",
|
|
"There's some fiddly stuff to allow OpenAI \"to call our tool\"\n",
|
|
"\n",
|
|
"What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n",
|
|
"\n",
|
|
"Here's how the new chat function looks:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2d67fb72-132e-499e-9931-86cb71b634b6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def chat(message, history):\n",
|
|
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
|
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
|
|
"\n",
|
|
" if response.choices[0].finish_reason==\"tool_calls\":\n",
|
|
" message = response.choices[0].message\n",
|
|
" response, item = handle_tool_call(message)\n",
|
|
" print('response', response, 'item', item)\n",
|
|
" messages.append(message)\n",
|
|
" messages.append(response)\n",
|
|
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
|
|
" \n",
|
|
" return response.choices[0].message.content"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3b4de767-954a-4077-a5f7-0055a0b90393",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# We have to write that function handle_tool_call:\n",
|
|
"\n",
|
|
"def handle_tool_call(message):\n",
|
|
" tool_call = message.tool_calls[0]\n",
|
|
" arguments = json.loads(tool_call.function.arguments)\n",
|
|
" item = arguments.get('product') \n",
|
|
" print('product', item)\n",
|
|
" price = get_item_price(item)\n",
|
|
" response = {\n",
|
|
" \"role\": \"tool\",\n",
|
|
" \"content\": json.dumps({\"item\": item,\"price\": price}),\n",
|
|
" \"tool_call_id\": tool_call.id\n",
|
|
" }\n",
|
|
" return response, item\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5ffda702-6ac5-4d13-9703-a14fa93aea68",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0ae2edbf-de58-43fa-b380-267cfc1755de",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|