94 lines
3.3 KiB
Python
94 lines
3.3 KiB
Python
from typing import Optional
|
|
from tqdm import tqdm
|
|
from datasets import load_dataset
|
|
from transformers import AutoTokenizer
|
|
import re
|
|
|
|
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
|
MIN_TOKENS = 150
|
|
MAX_TOKENS = 160
|
|
MIN_CHARS = 300
|
|
CEILING_CHARS = MAX_TOKENS * 7
|
|
|
|
class Item:
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
|
eos = tokenizer.eos_token
|
|
bos = tokenizer.bos_token
|
|
PREFIX = "Price is $"
|
|
QUESTION = "How much does this cost to the nearest dollar?"
|
|
|
|
title: str
|
|
price: float
|
|
category: str
|
|
token_count: int = 0
|
|
text: Optional[str]
|
|
details: Optional[str]
|
|
prompt: Optional[str] = None
|
|
include = False
|
|
|
|
def __init__(self, data, price, category):
|
|
self.title = data['title']
|
|
self.price = price
|
|
self.category = category
|
|
self.parse(data)
|
|
|
|
def scrub_details(self):
|
|
details = self.details
|
|
removals = ['"Batteries Included?": "No"', '"Batteries Included?": "Yes"', '"Batteries Required?": "No"', '"Batteries Required?": "Yes"', "By Manufacturer", "Item", "Date First", "Package", ":", "Number of", "Best Sellers", "Number", "Product "]
|
|
for remove in removals:
|
|
details = details.replace(remove, "")
|
|
return details
|
|
|
|
def scrub(self, stuff):
|
|
stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip()
|
|
stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",")
|
|
words = stuff.split(' ')
|
|
select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)]
|
|
return " ".join(select)
|
|
|
|
def parse(self, data):
|
|
contents = '\n'.join(data['description'])
|
|
if contents:
|
|
contents += '\n'
|
|
features = '\n'.join(data['features'])
|
|
if features:
|
|
contents += features + '\n'
|
|
self.details = data['details']
|
|
if self.details:
|
|
contents += self.scrub_details() + '\n'
|
|
if len(contents) > MIN_CHARS:
|
|
text = f"{self.scrub(self.title)}\n{self.scrub(contents[:CEILING_CHARS])}"
|
|
tokens = self.tokenizer.encode(text, add_special_tokens=False)
|
|
if len(tokens) > MIN_TOKENS:
|
|
tokens = tokens[:MAX_TOKENS]
|
|
text = self.tokenizer.decode(tokens)
|
|
self.make_prompt(text)
|
|
self.include = True
|
|
|
|
def make_prompt(self, text):
|
|
self.prompt = f"{self.QUESTION}\n\n{text}\n\n"
|
|
self.prompt += f"{self.PREFIX}{str(round(self.price))}.00"
|
|
self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False))
|
|
|
|
def test_prompt(self):
|
|
return self.prompt.split(self.PREFIX)[0] + self.PREFIX
|
|
|
|
def read_dataset(name):
|
|
print(f"Loading dataset {name}", flush=True)
|
|
dataset = load_dataset("McAuley-Lab/Amazon-Reviews-2023", f"raw_meta_{name}", split="full", trust_remote_code=True)
|
|
results = []
|
|
for data in dataset:
|
|
try:
|
|
price_str = data['price']
|
|
if price_str:
|
|
price = float(price_str)
|
|
if price >= 0.5 and price <= 999.49:
|
|
item = Item(data, price, name)
|
|
if item.include:
|
|
results.append(item)
|
|
except ValueError:
|
|
pass
|
|
print(f"Completed loading {name} with {len(results):,} datapoints", flush=True)
|
|
del dataset
|
|
return results |