Files
LLM_Engineering_OLD/week2/community-contributions/day1-three-model-conversion.ipynb

238 lines
7.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "b5bd5c7e-6a0a-400b-89f8-06b7aa6c5b89",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import anthropic\n",
"from IPython.display import Markdown, display, update_display\n",
"import google.generativeai"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "939a1b88-9157-4149-8b97-0f55c95f7742",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"# Print the key prefixes to help with any debugging\n",
"\n",
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"if anthropic_api_key:\n",
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
"else:\n",
" print(\"Anthropic API Key not set\")\n",
"\n",
"if google_api_key:\n",
" print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
"else:\n",
" print(\"Google API Key not set\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74a16b93-7b95-44fc-956d-7335f808960b",
"metadata": {},
"outputs": [],
"source": [
"# Connect to OpenAI, Anthropic Claude, Google Gemini\n",
"\n",
"openai = OpenAI()\n",
"claude = anthropic.Anthropic()\n",
"gemini_via_openai_client = OpenAI(\n",
" api_key=google_api_key, \n",
" base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3334556c-4a5e-48b7-944d-5943c607be02",
"metadata": {},
"outputs": [],
"source": [
"# Let's make a conversation between GPT-4o-mini and Claude-3-haiku\n",
"# We're using cheap versions of models so the costs will be minimal\n",
"\n",
"gpt_model = \"gpt-4o-mini\"\n",
"claude_model = \"claude-3-haiku-20240307\"\n",
"gemini_model = \"gemini-1.5-flash\"\n",
"\n",
"gpt_system = \"You are a chatbot who is very argumentative; \\\n",
"you disagree with anything in the conversation and you challenge everything, in a snarky way. \\\n",
"Generate one sentence at a time\"\n",
"\n",
"claude_system = \"You are a very polite, courteous chatbot. You try to agree with \\\n",
"everything the other person says, or find common ground. If the other person is argumentative, \\\n",
"you try to calm them down and keep chatting. \\\n",
"Generate one sentence at a time\"\n",
"\n",
"gemini_system = \"You are a neutral chatbot with no emotional bias. \\\n",
"Generate one sentence at a time\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f2a505b-2bcd-4b1a-b16f-c73cafb1e53c",
"metadata": {},
"outputs": [],
"source": [
"def combine_msg(model1, msg1, model2, msg2):\n",
" return model1 + \" said: \" + msg1 + \"\\n\\n Then \" + model2 + \" said: \" + msg1 + \".\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3cd2a2e2-4e23-4afe-915d-be6a769ab69f",
"metadata": {},
"outputs": [],
"source": [
"def call_gpt():\n",
" messages = [{\"role\": \"system\", \"content\": gpt_system}]\n",
" for gpt_msg, claude_msg, gemini_msg in zip(gpt_messages, claude_messages, gemini_messages):\n",
" messages.append({\"role\": \"assistant\", \"content\": gpt_msg})\n",
" messages.append({\"role\": \"user\", \"content\": combine_msg(\"Claude\", claude_msg, \"Gemini\", gemini_msg)})\n",
" completion = openai.chat.completions.create(\n",
" model=gpt_model,\n",
" messages=messages\n",
" )\n",
" return completion.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e3ec394-3014-418a-a50f-28ed4ce1a372",
"metadata": {},
"outputs": [],
"source": [
"def call_claude():\n",
" messages = []\n",
" messages.append({\"role\": \"user\", \"content\": \"GPT said: \" + gpt_messages[0]})\n",
" # the length of gpt_messages: n + 1\n",
" # the length of claude_messages and gemini_messages: n\n",
" for i in range(len(claude_messages)): \n",
" claude_msg = claude_messages[i]\n",
" gemini_msg = gemini_messages[i]\n",
" gpt_msg = gpt_messages[i + 1]\n",
" messages.append({\"role\": \"assistant\", \"content\": claude_msg})\n",
" messages.append({\"role\": \"user\", \"content\": combine_msg(\"Gemini\", gemini_msg, \"GPT\", gpt_msg)})\n",
" message = claude.messages.create(\n",
" model=claude_model,\n",
" system=claude_system,\n",
" messages=messages,\n",
" max_tokens=500\n",
" )\n",
" return message.content[0].text"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2c91c82-1f0d-4708-bf31-8d06d9e28a49",
"metadata": {},
"outputs": [],
"source": [
"def call_gemini():\n",
" messages = []\n",
" messages.append({\"role\": \"system\", \"content\": gemini_system})\n",
" messages.append({\"role\": \"user\", \"content\": combine_msg(\"GPT\", gpt_messages[0], \"Claude\", claude_messages[0])})\n",
" # the length of gpt_messages and claude_messages: n + 1\n",
" # the length of gemini_messages: n\n",
" for i in range(len(gemini_messages)): \n",
" gemini_msg = gemini_messages[i]\n",
" gpt_msg = gpt_messages[i + 1]\n",
" claude_msg = claude_messages[i + 1]\n",
" messages.append({\"role\": \"assistant\", \"content\": gemini_msg})\n",
" messages.append({\"role\": \"user\", \"content\": combine_msg(\"GPT\", gpt_msg, \"Claude\", claude_msg)})\n",
" response = gemini_via_openai_client.chat.completions.create(\n",
" model=gemini_model,\n",
" messages=messages\n",
" )\n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b024be8d-4728-4500-92b6-34fde2da6285",
"metadata": {},
"outputs": [],
"source": [
"gpt_messages = [\"Hi there.\"]\n",
"claude_messages = [\"Hi.\"]\n",
"gemini_messages = [\"Hi.\"]\n",
"\n",
"print(f\"GPT:\\n{gpt_messages[0]}\\n\")\n",
"print(f\"Claude:\\n{claude_messages[0]}\\n\")\n",
"print(f\"Gemini:\\n{gemini_messages[0]}\\n\")\n",
"\n",
"for i in range(5):\n",
" gpt_next = call_gpt()\n",
" print(f\"GPT:\\n{gpt_next}\\n\")\n",
" gpt_messages.append(gpt_next)\n",
" \n",
" claude_next = call_claude()\n",
" print(f\"Claude:\\n{claude_next}\\n\")\n",
" claude_messages.append(claude_next)\n",
"\n",
" gemini_next = call_gemini()\n",
" print(f\"Gemini:\\n{gemini_next}\\n\")\n",
" gemini_messages.append(gemini_next)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35a46c06-87ba-46b2-b90d-b3a6ae9e94e2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}