Files
LLM_Engineering_OLD/week6/community-contributions/finetuning-joshua/enhanced_items.py
The Top Dev b832a5ee51 Add Week 6 finetuning solution: Clean implementation with pickle data
- Added Week6_Product_Pricer_Clean.ipynb with complete fine-tuning pipeline
- Added enhanced_items.py and testing.py modules for Windows compatibility
- Added train.pkl, test.pkl, validation.pkl data files (250 items total)
- Implements OpenAI fine-tuning with enhanced prompts
- Includes comprehensive evaluation and comparison framework
- Ready for submission and grading
2025-10-29 05:29:54 +03:00

150 lines
5.0 KiB
Python

from typing import Optional
from transformers import AutoTokenizer
import re
import os
# Try multiple model sources in order of preference
BASE_MODEL_OPTIONS = [
"/root/.llama/checkpoints/Llama3.1-8B", # Local llama-stack download
"microsoft/DialoGPT-medium", # Accessible alternative
"gpt2" # Fallback
]
BASE_MODEL = None
MIN_TOKENS = 150 # Any less than this, and we don't have enough useful content
MAX_TOKENS = 160 # Truncate after this many tokens. Then after adding in prompt text, we will get to around 180 tokens
MIN_CHARS = 300
CEILING_CHARS = MAX_TOKENS * 7
class Item:
"""
An Item is a cleaned, curated datapoint of a Product with a Price
Enhanced version with better error handling and alternative tokenizer
"""
# Initialize tokenizer with fallback options
tokenizer = None
for model_path in BASE_MODEL_OPTIONS:
try:
if model_path.startswith("/") and not os.path.exists(model_path):
continue # Skip local paths that don't exist
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
BASE_MODEL = model_path
print(f"✅ Successfully loaded tokenizer from: {model_path}")
break
except Exception as e:
print(f"⚠️ Failed to load {model_path}: {e}")
continue
if tokenizer is None:
print("❌ All tokenizer options failed. Using character-based fallback.")
# Create a dummy tokenizer for fallback
class DummyTokenizer:
def encode(self, text, add_special_tokens=False):
# Rough approximation: 1 token ≈ 4 characters
return list(range(len(text) // 4))
def decode(self, tokens):
return "dummy text"
tokenizer = DummyTokenizer()
BASE_MODEL = "fallback"
PREFIX = "Price is $"
QUESTION = "How much does this cost to the nearest dollar?"
REMOVALS = [
'"Batteries Included?": "No"',
'"Batteries Included?": "Yes"',
'"Batteries Required?": "No"',
'"Batteries Required?": "Yes"',
"By Manufacturer",
"Item",
"Date First",
"Package",
":",
"Number of",
"Best Sellers",
"Number",
"Product "
]
title: str
price: float
category: str
token_count: int = 0
details: Optional[str]
prompt: Optional[str] = None
include = False
def __init__(self, data, price):
self.title = data['title']
self.price = price
self.parse(data)
def scrub_details(self):
"""
Clean up the details string by removing common text that doesn't add value
"""
details = self.details
for remove in self.REMOVALS:
details = details.replace(remove, "")
return details
def scrub(self, stuff):
"""
Clean up the provided text by removing unnecessary characters and whitespace
Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers
"""
stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip()
stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",")
words = stuff.split(' ')
select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)]
return " ".join(select)
def parse(self, data):
"""
Parse this datapoint and if it fits within the allowed Token range,
then set include to True
"""
contents = '\n'.join(data['description'])
if contents:
contents += '\n'
features = '\n'.join(data['features'])
if features:
contents += features + '\n'
self.details = data['details']
if self.details:
contents += self.scrub_details() + '\n'
if len(contents) > MIN_CHARS:
contents = contents[:CEILING_CHARS]
text = f"{self.scrub(self.title)}\n{self.scrub(contents)}"
tokens = self.tokenizer.encode(text, add_special_tokens=False)
if len(tokens) > MIN_TOKENS:
tokens = tokens[:MAX_TOKENS]
text = self.tokenizer.decode(tokens)
self.make_prompt(text)
self.include = True
def make_prompt(self, text):
"""
Set the prompt instance variable to be a prompt appropriate for training
"""
self.prompt = f"{self.QUESTION}\n\n{text}\n\n"
self.prompt += f"{self.PREFIX}{str(round(self.price))}.00"
self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False))
def test_prompt(self):
"""
Return a prompt suitable for testing, with the actual price removed
"""
return self.prompt.split(self.PREFIX)[0] + self.PREFIX
def __repr__(self):
"""
Return a String version of this Item
"""
return f"<{self.title} = ${self.price}>"