- Added Week6_Product_Pricer_Clean.ipynb with complete fine-tuning pipeline - Added enhanced_items.py and testing.py modules for Windows compatibility - Added train.pkl, test.pkl, validation.pkl data files (250 items total) - Implements OpenAI fine-tuning with enhanced prompts - Includes comprehensive evaluation and comparison framework - Ready for submission and grading
150 lines
5.0 KiB
Python
150 lines
5.0 KiB
Python
from typing import Optional
|
|
from transformers import AutoTokenizer
|
|
import re
|
|
import os
|
|
|
|
# Try multiple model sources in order of preference
|
|
BASE_MODEL_OPTIONS = [
|
|
"/root/.llama/checkpoints/Llama3.1-8B", # Local llama-stack download
|
|
"microsoft/DialoGPT-medium", # Accessible alternative
|
|
"gpt2" # Fallback
|
|
]
|
|
|
|
BASE_MODEL = None
|
|
|
|
MIN_TOKENS = 150 # Any less than this, and we don't have enough useful content
|
|
MAX_TOKENS = 160 # Truncate after this many tokens. Then after adding in prompt text, we will get to around 180 tokens
|
|
|
|
MIN_CHARS = 300
|
|
CEILING_CHARS = MAX_TOKENS * 7
|
|
|
|
class Item:
|
|
"""
|
|
An Item is a cleaned, curated datapoint of a Product with a Price
|
|
Enhanced version with better error handling and alternative tokenizer
|
|
"""
|
|
|
|
# Initialize tokenizer with fallback options
|
|
tokenizer = None
|
|
for model_path in BASE_MODEL_OPTIONS:
|
|
try:
|
|
if model_path.startswith("/") and not os.path.exists(model_path):
|
|
continue # Skip local paths that don't exist
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
BASE_MODEL = model_path
|
|
print(f"✅ Successfully loaded tokenizer from: {model_path}")
|
|
break
|
|
except Exception as e:
|
|
print(f"⚠️ Failed to load {model_path}: {e}")
|
|
continue
|
|
|
|
if tokenizer is None:
|
|
print("❌ All tokenizer options failed. Using character-based fallback.")
|
|
# Create a dummy tokenizer for fallback
|
|
class DummyTokenizer:
|
|
def encode(self, text, add_special_tokens=False):
|
|
# Rough approximation: 1 token ≈ 4 characters
|
|
return list(range(len(text) // 4))
|
|
def decode(self, tokens):
|
|
return "dummy text"
|
|
tokenizer = DummyTokenizer()
|
|
BASE_MODEL = "fallback"
|
|
|
|
PREFIX = "Price is $"
|
|
QUESTION = "How much does this cost to the nearest dollar?"
|
|
REMOVALS = [
|
|
'"Batteries Included?": "No"',
|
|
'"Batteries Included?": "Yes"',
|
|
'"Batteries Required?": "No"',
|
|
'"Batteries Required?": "Yes"',
|
|
"By Manufacturer",
|
|
"Item",
|
|
"Date First",
|
|
"Package",
|
|
":",
|
|
"Number of",
|
|
"Best Sellers",
|
|
"Number",
|
|
"Product "
|
|
]
|
|
|
|
title: str
|
|
price: float
|
|
category: str
|
|
token_count: int = 0
|
|
details: Optional[str]
|
|
prompt: Optional[str] = None
|
|
include = False
|
|
|
|
def __init__(self, data, price):
|
|
self.title = data['title']
|
|
self.price = price
|
|
self.parse(data)
|
|
|
|
def scrub_details(self):
|
|
"""
|
|
Clean up the details string by removing common text that doesn't add value
|
|
"""
|
|
details = self.details
|
|
for remove in self.REMOVALS:
|
|
details = details.replace(remove, "")
|
|
return details
|
|
|
|
def scrub(self, stuff):
|
|
"""
|
|
Clean up the provided text by removing unnecessary characters and whitespace
|
|
Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers
|
|
"""
|
|
stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip()
|
|
stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",")
|
|
words = stuff.split(' ')
|
|
select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)]
|
|
return " ".join(select)
|
|
|
|
def parse(self, data):
|
|
"""
|
|
Parse this datapoint and if it fits within the allowed Token range,
|
|
then set include to True
|
|
"""
|
|
contents = '\n'.join(data['description'])
|
|
if contents:
|
|
contents += '\n'
|
|
features = '\n'.join(data['features'])
|
|
if features:
|
|
contents += features + '\n'
|
|
self.details = data['details']
|
|
if self.details:
|
|
contents += self.scrub_details() + '\n'
|
|
if len(contents) > MIN_CHARS:
|
|
contents = contents[:CEILING_CHARS]
|
|
text = f"{self.scrub(self.title)}\n{self.scrub(contents)}"
|
|
tokens = self.tokenizer.encode(text, add_special_tokens=False)
|
|
if len(tokens) > MIN_TOKENS:
|
|
tokens = tokens[:MAX_TOKENS]
|
|
text = self.tokenizer.decode(tokens)
|
|
self.make_prompt(text)
|
|
self.include = True
|
|
|
|
def make_prompt(self, text):
|
|
"""
|
|
Set the prompt instance variable to be a prompt appropriate for training
|
|
"""
|
|
self.prompt = f"{self.QUESTION}\n\n{text}\n\n"
|
|
self.prompt += f"{self.PREFIX}{str(round(self.price))}.00"
|
|
self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False))
|
|
|
|
def test_prompt(self):
|
|
"""
|
|
Return a prompt suitable for testing, with the actual price removed
|
|
"""
|
|
return self.prompt.split(self.PREFIX)[0] + self.PREFIX
|
|
|
|
def __repr__(self):
|
|
"""
|
|
Return a String version of this Item
|
|
"""
|
|
return f"<{self.title} = ${self.price}>"
|
|
|
|
|
|
|