Files
LLM_Engineering_OLD/week5/community-contributions/tochi/whatsapp_chat_rag.ipynb
2025-10-24 05:17:10 +01:00

208 lines
5.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "300ea30a",
"metadata": {},
"source": [
"# Expert Knowledge Worker\n",
"### This project is a question and answering agent based of exported WhatsApp chat messages in from a group chat"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4bc17177",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "400ac859",
"metadata": {},
"outputs": [],
"source": [
"# imports fomr langchain\n",
"\n",
"from langchain.document_loaders import DirectoryLoader, TextLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
"from langchain_chroma import Chroma\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "22199256",
"metadata": {},
"outputs": [],
"source": [
"# importing the low cost model and database\n",
"\n",
"MODEL = \"gpt-5-nano\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f6be1f4",
"metadata": {},
"outputs": [],
"source": [
"load_dotenv(override=True)\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b62754d4",
"metadata": {},
"outputs": [],
"source": [
"# Read in documents using LangChain's loaders\n",
"# Take only .txt files in the knowledge-base folder (not subfolders)\n",
"\n",
"files = glob.glob(\"knowledge-base/*.txt\")\n",
"\n",
"print(files)\n",
"\n",
"def add_metadata(doc, doc_type):\n",
" doc.metadata[\"doc_type\"] = doc_type\n",
" return doc\n",
"\n",
"text_loader_kwargs = {'encoding': 'utf-8'}\n",
"\n",
"# Load all .txt files from knowledge-base folder\n",
"doc_type = \"knowledge-base\"\n",
"loader = DirectoryLoader(\n",
" \"knowledge-base\", \n",
" glob=\"*.txt\", # Only .txt files in root folder, not subfolders\n",
" loader_cls=TextLoader, \n",
" loader_kwargs=text_loader_kwargs\n",
")\n",
"documents = loader.load()\n",
"\n",
"# Add metadata to all documents\n",
"documents = [add_metadata(doc, doc_type) for doc in documents]\n",
"\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"chunks = text_splitter.split_documents(documents)\n",
"\n",
"print(f\"Total number of chunks: {len(chunks)}\")\n",
"print(f\"Total number of documents: {len(documents)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63aeac25",
"metadata": {},
"outputs": [],
"source": [
"embeddings = OpenAIEmbeddings()\n",
"if os.path.exists(db_name):\n",
" Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n",
"\n",
"\n",
"vectorstore = Chroma.from_documents(\n",
" documents=chunks, embedding=embeddings, persist_directory=db_name\n",
")\n",
"print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5426899a",
"metadata": {},
"outputs": [],
"source": [
"# create a new Chat with OpenAI\n",
"llm = ChatOpenAI(temperature=0.7, model_name=MODEL)\n",
"memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
"retriever = vectorstore.as_retriever()\n",
"conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "87e0e7c0",
"metadata": {},
"outputs": [],
"source": [
"query = \"Who is mentioned a lot?\"\n",
"result = conversation_chain.invoke({\"question\": query})\n",
"print(result[\"answer\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f36bac2f",
"metadata": {},
"outputs": [],
"source": [
"memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
"conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1e087213",
"metadata": {},
"outputs": [],
"source": [
"def chat(question, history):\n",
" result = conversation_chain.invoke({\"question\": question})\n",
" return result[\"answer\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e1fd9b2d",
"metadata": {},
"outputs": [],
"source": [
"view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}