165 lines
6.3 KiB
Python
165 lines
6.3 KiB
Python
import logging
|
|
import queue
|
|
import threading
|
|
import time
|
|
import gradio as gr
|
|
from deal_agent_framework import DealAgentFramework
|
|
from agents.deals import Opportunity, Deal
|
|
from log_utils import reformat
|
|
import plotly.graph_objects as go
|
|
|
|
|
|
class QueueHandler(logging.Handler):
|
|
def __init__(self, log_queue):
|
|
super().__init__()
|
|
self.log_queue = log_queue
|
|
|
|
def emit(self, record):
|
|
self.log_queue.put(self.format(record))
|
|
|
|
def html_for(log_data):
|
|
output = '<br>'.join(log_data[-18:])
|
|
return f"""
|
|
<div id="scrollContent" style="height: 400px; overflow-y: auto; border: 1px solid #ccc; background-color: #222229; padding: 10px;">
|
|
{output}
|
|
</div>
|
|
"""
|
|
|
|
def setup_logging(log_queue):
|
|
handler = QueueHandler(log_queue)
|
|
formatter = logging.Formatter(
|
|
"[%(asctime)s] %(message)s",
|
|
datefmt="%Y-%m-%d %H:%M:%S %z",
|
|
)
|
|
handler.setFormatter(formatter)
|
|
logger = logging.getLogger()
|
|
logger.addHandler(handler)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
class App:
|
|
|
|
def __init__(self):
|
|
self.agent_framework = None
|
|
|
|
def get_agent_framework(self):
|
|
if not self.agent_framework:
|
|
self.agent_framework = DealAgentFramework()
|
|
return self.agent_framework
|
|
|
|
def run(self):
|
|
with gr.Blocks(title="The Price is Right", fill_width=True) as ui:
|
|
|
|
log_data = gr.State([])
|
|
|
|
def table_for(opps):
|
|
return [[opp.deal.product_description, f"${opp.deal.price:.2f}", f"${opp.estimate:.2f}", f"${opp.discount:.2f}", opp.deal.url] for opp in opps]
|
|
|
|
def update_output(log_data, log_queue, result_queue):
|
|
initial_result = table_for(self.get_agent_framework().memory)
|
|
final_result = None
|
|
while True:
|
|
try:
|
|
message = log_queue.get_nowait()
|
|
log_data.append(reformat(message))
|
|
yield log_data, html_for(log_data), final_result or initial_result
|
|
except queue.Empty:
|
|
try:
|
|
final_result = result_queue.get_nowait()
|
|
yield log_data, html_for(log_data), final_result or initial_result
|
|
except queue.Empty:
|
|
if final_result is not None:
|
|
break
|
|
time.sleep(0.1)
|
|
|
|
def get_initial_plot():
|
|
fig = go.Figure()
|
|
fig.update_layout(
|
|
title='Loading vector DB...',
|
|
height=400,
|
|
)
|
|
return fig
|
|
|
|
def get_plot():
|
|
documents, vectors, colors = DealAgentFramework.get_plot_data(max_datapoints=1000)
|
|
# Create the 3D scatter plot
|
|
fig = go.Figure(data=[go.Scatter3d(
|
|
x=vectors[:, 0],
|
|
y=vectors[:, 1],
|
|
z=vectors[:, 2],
|
|
mode='markers',
|
|
marker=dict(size=2, color=colors, opacity=0.7),
|
|
)])
|
|
|
|
fig.update_layout(
|
|
scene=dict(xaxis_title='x',
|
|
yaxis_title='y',
|
|
zaxis_title='z',
|
|
aspectmode='manual',
|
|
aspectratio=dict(x=2.2, y=2.2, z=1), # Make x-axis twice as long
|
|
camera=dict(
|
|
eye=dict(x=1.6, y=1.6, z=0.8) # Adjust camera position
|
|
)),
|
|
height=400,
|
|
margin=dict(r=5, b=1, l=5, t=2)
|
|
)
|
|
|
|
return fig
|
|
|
|
def do_run():
|
|
new_opportunities = self.get_agent_framework().run()
|
|
table = table_for(new_opportunities)
|
|
return table
|
|
|
|
def run_with_logging(initial_log_data):
|
|
log_queue = queue.Queue()
|
|
result_queue = queue.Queue()
|
|
setup_logging(log_queue)
|
|
|
|
def worker():
|
|
result = do_run()
|
|
result_queue.put(result)
|
|
|
|
thread = threading.Thread(target=worker)
|
|
thread.start()
|
|
|
|
for log_data, output, final_result in update_output(initial_log_data, log_queue, result_queue):
|
|
yield log_data, output, final_result
|
|
|
|
def do_select(selected_index: gr.SelectData):
|
|
opportunities = self.get_agent_framework().memory
|
|
row = selected_index.index[0]
|
|
opportunity = opportunities[row]
|
|
self.get_agent_framework().planner.messenger.alert(opportunity)
|
|
|
|
with gr.Row():
|
|
gr.Markdown('<div style="text-align: center;font-size:24px"><strong>The Price is Right</strong> - Autonomous Agent Framework that hunts for deals</div>')
|
|
with gr.Row():
|
|
gr.Markdown('<div style="text-align: center;font-size:14px">A proprietary fine-tuned LLM deployed on Modal and a RAG pipeline with a frontier model collaborate to send push notifications with great online deals.</div>')
|
|
with gr.Row():
|
|
opportunities_dataframe = gr.Dataframe(
|
|
headers=["Deals found so far", "Price", "Estimate", "Discount", "URL"],
|
|
wrap=True,
|
|
column_widths=[6, 1, 1, 1, 3],
|
|
row_count=10,
|
|
col_count=5,
|
|
max_height=400,
|
|
)
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
logs = gr.HTML()
|
|
with gr.Column(scale=1):
|
|
plot = gr.Plot(value=get_plot(), show_label=False)
|
|
|
|
ui.load(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])
|
|
|
|
timer = gr.Timer(value=300, active=True)
|
|
timer.tick(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])
|
|
|
|
opportunities_dataframe.select(do_select)
|
|
|
|
ui.launch(share=False, inbrowser=True)
|
|
|
|
if __name__=="__main__":
|
|
App().run()
|
|
|