178 lines
4.9 KiB
Plaintext
178 lines
4.9 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "0b15b939-593a-4ccc-89bd-0cee09fe2f12",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Python Code Summarizer\n",
|
||
"\n",
|
||
"The Below code will summarize the python code and example it in details which can help codes better understand a forigen code."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "8dcf353c-e4f2-4ce7-a3b5-71b29700a148",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Imports\n",
|
||
"from IPython.display import Markdown, display\n",
|
||
"import os\n",
|
||
"import openai\n",
|
||
"from dotenv import load_dotenv"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "111cf632-08e8-4246-a5bb-b56942789242",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"load_dotenv(override=True)\n",
|
||
"api_key = os.getenv('OPENAI_API_KEY')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "e4f5376f-5e6f-4d75-81bf-222e34bfe828",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def read_code(**kwargs):\n",
|
||
" \"\"\"\n",
|
||
" You can pass two types of key word arguments to this function.\n",
|
||
" code_path= Path to your complex python code.\n",
|
||
" code= Passing raw python code.\n",
|
||
" \"\"\"\n",
|
||
" code_path = kwargs.get('code_path',None)\n",
|
||
" code_raw = kwargs.get('code',None)\n",
|
||
" \n",
|
||
" if code_path:\n",
|
||
" with open(code_path, 'r') as code_file:\n",
|
||
" code = code_file.read()\n",
|
||
" return (True, code)\n",
|
||
"\n",
|
||
" if code_raw:\n",
|
||
" return (True, code_raw)\n",
|
||
"\n",
|
||
" return (False, None)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "00743dac-0e70-45b7-879a-d7293a6f68a6",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Model Prompt\n",
|
||
"system_prompt = (\n",
|
||
" \"You are a helpful assistant. The following input will be a Python code snippet. \"\n",
|
||
" \"Your task is to:\\n\\n\"\n",
|
||
" \"1. Summarize the overall purpose of the code.\\n\"\n",
|
||
" \"2. Explain the code line by line, describing what each line does and why it's written that way.\\n\"\n",
|
||
" \"3. Provide reasoning behind the code structure and logic to help novice Python developers understand the concepts better.\\n\\n\"\n",
|
||
" \"Use Markdown format in your response. Make the explanation beginner-friendly, using code blocks, bullet points, and headings where helpful.\"\n",
|
||
" ) \n",
|
||
"# In a plot twist worthy of sci-fi, this prompt was written by ChatGPT...\n",
|
||
"# to tell ChatGPT how to respond. We’ve officially entered the Matrix. 🤖🌀"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ed7d2447-32a9-4761-8b0a-b31814bee7e5",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"\n",
|
||
"# Guess where I got this code from :)\n",
|
||
"code_line = \"\"\"yeild from set(book.get(\"author)) for book in books if book.get(\"author\"))\"\"\"\n",
|
||
"is_code, raw_code = read_code(code=code_line)\n",
|
||
"\n",
|
||
"if is_code:\n",
|
||
" user_prompt = raw_code\n",
|
||
"else:\n",
|
||
" print(\"Invalid Arguments\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "d74a1a39-1c24-4d4b-bd49-0ca416377a93",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def messages_for():\n",
|
||
" return [\n",
|
||
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
||
" {\"role\": \"user\", \"content\": user_prompt}\n",
|
||
" ]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "df6c2726-d0fb-4ab6-b13b-d047e8807558",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def summarize():\n",
|
||
" \n",
|
||
" response = openai.chat.completions.create(\n",
|
||
" model = \"gpt-4o-mini\",\n",
|
||
" messages = messages_for()\n",
|
||
" )\n",
|
||
" return response.choices[0].message.content"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "8425144c-595e-4ad6-9801-3e8778d285c4",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def display_summary():\n",
|
||
" summary = summarize()\n",
|
||
" display(Markdown(summary))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "744bffdd-ec3c-4b27-b126-81bf3e8c8295",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"display_summary()"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.11.12"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|