193 lines
5.3 KiB
Plaintext
193 lines
5.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e3ce0a59-fbfb-4377-85db-f62f95039200",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Day2 EXERCISE - Summarization using Ollama"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4e2a9393-7767-488e-a8bf-27c12dca35bd",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# imports\n",
|
|
"\n",
|
|
"import os\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"import requests\n",
|
|
"from bs4 import BeautifulSoup\n",
|
|
"from IPython.display import Markdown, display"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "29ddd15d-a3c5-4f4e-a678-873f56162724",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Constants\n",
|
|
"\n",
|
|
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
|
|
"HEADERS = {\"Content-Type\": \"application/json\"}\n",
|
|
"MODEL = \"llama3.2\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cb5c0f84-4e4d-4f87-b492-e09d0333a638",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# A class to represent a Webpage\n",
|
|
"# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n",
|
|
"\n",
|
|
"# Some websites need you to use proper headers when fetching them:\n",
|
|
"headers = {\n",
|
|
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"class Website:\n",
|
|
"\n",
|
|
" def __init__(self, url):\n",
|
|
" \"\"\"\n",
|
|
" Create this Website object from the given url using the BeautifulSoup library\n",
|
|
" \"\"\"\n",
|
|
" self.url = url\n",
|
|
" response = requests.get(url, headers=headers)\n",
|
|
" soup = BeautifulSoup(response.content, 'html.parser')\n",
|
|
" self.title = soup.title.string if soup.title else \"No title found\"\n",
|
|
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
|
|
" irrelevant.decompose()\n",
|
|
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "23457b52-c85b-4dc1-b946-6f1461dc0675",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"ed = Website(\"https://edwarddonner.com\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "bed206ed-43c1-4f68-ad01-a738b3b4648d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Define our system prompt - you can experiment with this later, changing the last sentence to 'Respond in markdown in Spanish.\"\n",
|
|
"\n",
|
|
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
|
|
"and provides a short summary, ignoring text that might be navigation related. \\\n",
|
|
"Respond in markdown.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e558f381-614a-461f-83bc-e5bdc99460df",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# A function that writes a User Prompt that asks for summaries of websites:\n",
|
|
"\n",
|
|
"def user_prompt_for(website):\n",
|
|
" user_prompt = f\"You are looking at a website titled {website.title}\"\n",
|
|
" user_prompt += \"\\nThe contents of this website is as follows; \\\n",
|
|
"please provide a short summary of this website in markdown. \\\n",
|
|
"If it includes news or announcements, then summarize these too.\\n\\n\"\n",
|
|
" user_prompt += website.text\n",
|
|
" return user_prompt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e5ba638d-aeb9-441e-a62a-8e8027ad8439",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# See how this function creates exactly the format above\n",
|
|
"\n",
|
|
"def messages_for(website):\n",
|
|
" return [\n",
|
|
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
|
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
|
|
" ]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e85ca2ec-3e46-4b8f-9c2f-66e7d20138fa",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#website search\n",
|
|
"\n",
|
|
"ed = Website(\"https://edwarddonner.com\")\n",
|
|
"messages=messages_for(ed)\n",
|
|
"\n",
|
|
"payload = {\n",
|
|
" \"model\": MODEL,\n",
|
|
" \"messages\": messages,\n",
|
|
" \"stream\": False\n",
|
|
" }"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7745b9c4-57dc-4867-9180-61fa5db55eb8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import ollama\n",
|
|
"\n",
|
|
"response = ollama.chat(model=MODEL, messages=messages)\n",
|
|
"print(response['message']['content'])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "402d5686-4e76-4110-b65a-b3906c35c0a4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|