Files
LLM_Engineering_OLD/week1/community-contributions/week1 EXERCISE_AI_techician.ipynb
2025-06-15 19:01:47 +05:30

170 lines
4.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "0",
"metadata": {},
"source": [
"# End of week 1 exercise\n",
"\n",
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"from IPython.display import Markdown, display, update_display\n",
"from dotenv import load_dotenv\n",
"import os\n",
"import openai\n",
"from openai import OpenAI\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"# constants\n",
"models = {\n",
" 'MODEL_GPT': 'gpt-4o-mini',\n",
" 'MODEL_LLAMA': 'llama3.2'\n",
"}\n",
"\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv(\"OPENAI_API_KEY\")\n",
"\n",
"# To use ollama using openai API (ensure that ollama is running on localhost)\n",
"ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
"\n",
"def model_choices(model):\n",
" if model in models:\n",
" return models[model]\n",
" else:\n",
" raise ValueError(f\"Model {model} not found in models dictionary\")\n",
"\n",
"def get_model_api(model='MODEL_GPT'):\n",
" if model == 'MODEL_GPT':\n",
" return openai, model_choices(model)\n",
" elif model == 'MODEL_LLAMA':\n",
" return ollama_via_openai, model_choices(model)\n",
" else:\n",
" raise ValueError(f\"Model {model} not found in models dictionary\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"# set up environment\n",
"\n",
"system_prompt = \"\"\" You are an AI assistant helping a user find information about a product. \n",
"The user asks you a technical question about code, and you provide a response with code snippets and explanations.\"\"\"\n",
"\n",
"def stream_brochure(question, model):\n",
" api, model_name = get_model_api(model)\n",
" stream = api.chat.completions.create(\n",
" model=model_name,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": question}\n",
" ],\n",
" stream=True\n",
" )\n",
" \n",
" response = \"\"\n",
" display_handle = display(Markdown(\"\"), display_id=True)\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
" update_display(Markdown(response), display_id=display_handle.display_id)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4",
"metadata": {},
"outputs": [],
"source": [
"# Here is the question; type over this to ask something new\n",
"\n",
"question = \"\"\"\n",
"Please explain what this code does and why:\n",
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5",
"metadata": {},
"outputs": [],
"source": [
"# Get the model of your choice (choices appeared below) to answer, with streaming \n",
"\n",
"\"\"\"models = {\n",
" 'MODEL_GPT': 'gpt-4o-mini',\n",
" 'MODEL_LLAMA': 'llama3.2'\n",
"}\"\"\"\n",
"\n",
"stream_brochure(question,'MODEL_GPT')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}