Files
LLM_Engineering_OLD/week1/community-contributions/day2_narrate_football_game.ipynb
2025-04-26 14:43:18 +02:00

219 lines
6.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "31d3c4a4-5442-4074-b812-42d60e0a0c04",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:29.195103Z",
"start_time": "2025-04-26T11:54:29.192394Z"
}
},
"outputs": [],
"source": [
"# In this example we read a footbal (soccer) game stat and we create a narration about the game as we are running a podcast\n",
"# use this website as an example: https://understat.com/match/27683"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf45e9d5-4913-416c-9880-5be60a96c0e6",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:30.218768Z",
"start_time": "2025-04-26T11:54:30.215752Z"
}
},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"from dotenv import load_dotenv\n",
"from IPython.display import Markdown, display\n",
"from bs4 import BeautifulSoup\n",
"import ollama"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "af8fea69-60aa-430c-a16c-8757b487e07a",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:31.218616Z",
"start_time": "2025-04-26T11:54:31.214154Z"
}
},
"outputs": [],
"source": [
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"# Check the key\n",
"\n",
"if not api_key:\n",
" print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
"elif not api_key.startswith(\"sk-proj-\"):\n",
" print(\n",
" \"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
"elif api_key.strip() != api_key:\n",
" print(\n",
" \"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
"else:\n",
" print(\"API key found and looks good so far!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "daee94d2-f82b-43f0-95d1-15370eda1bc7",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:32.216785Z",
"start_time": "2025-04-26T11:54:32.183600Z"
}
},
"outputs": [],
"source": [
"url = \"https://understat.com/match/27683\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0712dd1d-b6bc-41c6-84ec-d965f696f7aa",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:33.025841Z",
"start_time": "2025-04-26T11:54:33.023289Z"
}
},
"outputs": [],
"source": [
"system_prompt = (\"You are a football (soccer) analyst. Yuo are used to read stats of football \\\n",
" games and extract relevant information. You are asked to be a podcast host and \\\n",
" you need to create a narration of the game based on the stats you read and based \\\n",
" on the play by play moves (the one with minutes upfront). You're talking to the \\\n",
" general audience so try to use a easy language and do not be too much telegraphic\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "70c972a6-8af6-4ff2-a338-6d7ba90e2045",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:33.730097Z",
"start_time": "2025-04-26T11:54:33.725360Z"
}
},
"outputs": [],
"source": [
"# Some websites need you to use proper headers when fetching them:\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"class Website:\n",
" def __init__(self, url):\n",
" \"\"\"\n",
" Create this Website object from the given url using the BeautifulSoup library\n",
" \"\"\"\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4ccc1ba81c76ffb9",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:40.042357Z",
"start_time": "2025-04-26T11:54:40.040384Z"
}
},
"outputs": [],
"source": [
"def create_user_prompt(game):\n",
" user_prompt = f\"You are looking at {game.title} football game\"\n",
" user_prompt += \"\\nThis is the entire webpage of the game \\\n",
" Please provide a narration of the game in markdown. \\\n",
" Focus only on what happened on the game and the stats and ignore all the standings and anything else.\\n\\n\"\n",
" user_prompt += game.text\n",
" return user_prompt\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82b71c1a-895a-48e7-a945-13e615bb0096",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:41.316244Z",
"start_time": "2025-04-26T11:54:41.314110Z"
}
},
"outputs": [],
"source": [
"# Define messages with system_prompt and user_prompt\n",
"def messages_for(system_prompt_input, user_prompt_input):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt_input},\n",
" {\"role\": \"user\", \"content\": user_prompt_input}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "854dc42e-2bbd-493b-958f-c20484908300",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-26T11:54:55.239164Z",
"start_time": "2025-04-26T11:54:41.987168Z"
}
},
"outputs": [],
"source": [
"# And now: call the OpenAI API.\n",
"game = Website(url)\n",
"\n",
"response = ollama.chat(model=\"llama3.2\", messages=messages_for(system_prompt, create_user_prompt(game)))\n",
"\n",
"\n",
"# Response is provided in Markdown and displayed accordingly\n",
"display(Markdown(response['message']['content']))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}