189 lines
5.2 KiB
Plaintext
189 lines
5.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
|
|
"metadata": {},
|
|
"source": [
|
|
"# End of week 1 exercise\n",
|
|
"\n",
|
|
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
|
|
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c1070317-3ed9-4659-abe3-828943230e03",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# imports\n",
|
|
"\n",
|
|
"import os\n",
|
|
"import requests\n",
|
|
"import json\n",
|
|
"from typing import List\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"from bs4 import BeautifulSoup\n",
|
|
"from IPython.display import Markdown, display, update_display\n",
|
|
"from openai import OpenAI"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# constants\n",
|
|
"\n",
|
|
"MODEL_GPT = 'gpt-4o-mini'\n",
|
|
"MODEL_LLAMA = 'llama3.2'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# set up environment\n",
|
|
"\n",
|
|
"load_dotenv(override=True)\n",
|
|
"api_key = os.getenv('OPENAI_API_KEY')\n",
|
|
"\n",
|
|
"if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n",
|
|
" print(\"API key looks good so far\")\n",
|
|
"else:\n",
|
|
" print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "847fa7cd-1ae6-4888-933a-012e04ab1bcd",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"openai = OpenAI()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# here is the question; type over this to ask something new\n",
|
|
"\n",
|
|
"question = \"\"\"\n",
|
|
"Please explain what this code does and why:\n",
|
|
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
|
|
"\"\"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "60ce7000-a4a5-4cce-a261-e75ef45063b4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get gpt-4o-mini to answer, with streaming\n",
|
|
"\n",
|
|
"tone_setting = \"\"\n",
|
|
"toneFlag = str(input(\"Would you like the tutor to have a tone to them? (Y/N)\")).lower()\n",
|
|
"\n",
|
|
"if(toneFlag == \"y\"):\n",
|
|
" toneChoice = str(input(\"What kind of tone should they have? You can choose between sarcastic, humorous, snide, scholarly, or lugubrious: \")).lower()\n",
|
|
" tone_setting = f\"You have a very {toneChoice} tone and you respond to your students questions in kind. \"\n",
|
|
"\n",
|
|
"system_prompt = \"You are a computer science tutor who is helping their students with any programming questions they might have. \" + tone_setting + \"\\\n",
|
|
"Please give your responses in markdown format.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c038b94e-5b69-4833-b75a-cbd5827d9fb7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def question_prompt_setup(question):\n",
|
|
" user_prompt = \"The question I have for you is: \" + question\n",
|
|
" return user_prompt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8c544acd-7541-4356-90cc-2c3a6d2f81bf",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def tutor_response(question):\n",
|
|
" stream = openai.chat.completions.create(\n",
|
|
" model=MODEL_GPT,\n",
|
|
" messages=[\n",
|
|
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
|
" {\"role\": \"user\", \"content\": question_prompt_setup(question)}\n",
|
|
" ],\n",
|
|
" stream=True\n",
|
|
" )\n",
|
|
"\n",
|
|
" response = \"\"\n",
|
|
" display_handle = display(Markdown(\"\"), display_id=True)\n",
|
|
" for chunk in stream:\n",
|
|
" response += chunk.choices[0].delta.content or ''\n",
|
|
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
|
|
" update_display(Markdown(response), display_id=display_handle.display_id)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "975622fa-6c03-4069-a067-dfa0c878d04a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"tutor_response(question)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get Llama 3.2 to answer"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.13"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|