197 lines
5.7 KiB
Python
197 lines
5.7 KiB
Python
import os
|
|
import gradio as gr
|
|
from devops_ai_assistance import create_assistant, DevOpsAIAssistant
|
|
|
|
|
|
assistant = None
|
|
status_info = None
|
|
|
|
|
|
def initialize_assistant(kb_path: str):
|
|
"""Initialize the assistant with knowledge base"""
|
|
global assistant, status_info
|
|
|
|
try:
|
|
kb_path = kb_path.strip()
|
|
if not kb_path:
|
|
return "Error: Please provide a valid knowledge base path"
|
|
|
|
print(f"\n🚀 Initializing with knowledge base: {kb_path}")
|
|
assistant = create_assistant(kb_path)
|
|
status_info = assistant.get_status()
|
|
|
|
status_message = f"""
|
|
✅ **DevOps AI Assistant Initialized Successfully!**
|
|
|
|
📊 **Knowledge Base Statistics:**
|
|
- Documents Loaded: {status_info['documents_loaded']}
|
|
- Chunks Created: {status_info['chunks_created']}
|
|
- Vectors in Store: {status_info['vectors_in_store']}
|
|
- Knowledge Base Path: {status_info['knowledge_base_path']}
|
|
|
|
🎯 **Ready to Answer Questions About:**
|
|
- Kubernetes infrastructure configuration
|
|
- ArgoCD deployment manifests
|
|
- Helm charts and values
|
|
- Infrastructure as Code (IaC)
|
|
- DevOps best practices in your environment
|
|
|
|
Start by asking questions about your k8s cluster infrastructure!
|
|
"""
|
|
return status_message
|
|
|
|
except Exception as e:
|
|
error_msg = f"Error initializing assistant: {str(e)}"
|
|
print(f"❌ {error_msg}")
|
|
return f"❌ {error_msg}"
|
|
|
|
|
|
def chat_with_assistant(message: str, history):
|
|
"""Chat function for the assistant"""
|
|
global assistant
|
|
|
|
if not assistant:
|
|
bot_response = "❌ Assistant not initialized. Please provide a knowledge base path first."
|
|
history.append((message, bot_response))
|
|
return history, ""
|
|
|
|
if not message.strip():
|
|
bot_response = "Please enter a question about your DevOps infrastructure."
|
|
history.append((message, bot_response))
|
|
return history, ""
|
|
|
|
try:
|
|
result = assistant.ask(message)
|
|
answer = result.get('answer', '')
|
|
|
|
sources_text = ""
|
|
if result.get('sources'):
|
|
sources_text = "\n\n📚 **Sources:**\n"
|
|
for i, source in enumerate(result['sources'], 1):
|
|
source_file = source.get('source', 'Unknown')
|
|
file_type = source.get('file_type', 'Unknown')
|
|
sources_text += f"\n{i}. **{source_file}** ({file_type})"
|
|
|
|
bot_response = answer + sources_text if sources_text else answer
|
|
|
|
except Exception as e:
|
|
bot_response = f"Error processing question: {str(e)}"
|
|
|
|
history.append((message, bot_response))
|
|
return history, ""
|
|
|
|
|
|
def create_interface():
|
|
"""Create the Gradio interface"""
|
|
global assistant
|
|
|
|
with gr.Blocks(title="DevOps AI Assistant") as interface:
|
|
|
|
gr.Markdown("# 🤖 DevOps AI Assistant")
|
|
gr.Markdown("Intelligent Q&A system for your Kubernetes infrastructure powered by RAG and LLM")
|
|
|
|
gr.Markdown("## 🔧 Configuration")
|
|
gr.Markdown("Enter the path to your GitOps repository (knowledge base) to initialize the assistant")
|
|
|
|
with gr.Row():
|
|
kb_path_input = gr.Textbox(
|
|
label="Knowledge Base Path",
|
|
placeholder="/workspace/aau/repositories/infra-gitops/",
|
|
lines=1,
|
|
value="/workspace/aau/repositories/infra-gitops/"
|
|
)
|
|
init_button = gr.Button("🚀 Initialize Assistant")
|
|
|
|
status_output = gr.Markdown(value="⏳ Waiting for initialization...")
|
|
|
|
gr.Markdown("## 💬 Chat Interface")
|
|
|
|
chatbot = gr.Chatbot(
|
|
label="Conversation",
|
|
height=500,
|
|
show_copy_button=True,
|
|
avatar_images=("👤", "🤖"),
|
|
bubble_full_width=False
|
|
)
|
|
|
|
with gr.Row():
|
|
msg_input = gr.Textbox(
|
|
label="Your Question",
|
|
placeholder="Ask about your k8s infrastructure, ArgoCD, Helm charts, etc...",
|
|
lines=2,
|
|
scale=5
|
|
)
|
|
send_button = gr.Button("Send 💬", scale=1)
|
|
|
|
with gr.Row():
|
|
clear_button = gr.Button("🗑️ Clear Chat", scale=2)
|
|
|
|
with gr.Accordion("📋 Example Questions", open=False):
|
|
gr.Markdown("""
|
|
**Infrastructure & Deployment:**
|
|
- How is the Kubernetes cluster configured?
|
|
- What ArgoCD applications are deployed?
|
|
- Show me the Helm chart values for nginx
|
|
- What storage solutions are available?
|
|
|
|
**Monitoring & Observability:**
|
|
- How is Prometheus configured?
|
|
- What monitoring exporters are installed?
|
|
- Tell me about the metrics server setup
|
|
|
|
**Security & Access:**
|
|
- How are RBAC policies configured?
|
|
- What authentication methods are used?
|
|
- Explain the network policies
|
|
|
|
**DevOps Practices:**
|
|
- What is the deployment pipeline?
|
|
- How are secrets managed?
|
|
- Show me the backup strategy
|
|
""")
|
|
|
|
init_button.click(
|
|
initialize_assistant,
|
|
inputs=[kb_path_input],
|
|
outputs=[status_output]
|
|
)
|
|
|
|
msg_input.submit(
|
|
chat_with_assistant,
|
|
inputs=[msg_input, chatbot],
|
|
outputs=[chatbot, msg_input]
|
|
)
|
|
|
|
send_button.click(
|
|
chat_with_assistant,
|
|
inputs=[msg_input, chatbot],
|
|
outputs=[chatbot, msg_input]
|
|
)
|
|
|
|
clear_button.click(lambda: [], outputs=chatbot)
|
|
|
|
return interface
|
|
|
|
|
|
def main():
|
|
"""Main entry point"""
|
|
print("\n" + "=" * 60)
|
|
print("🚀 DevOps AI Assistant - RAG System")
|
|
print("=" * 60)
|
|
print("Starting Gradio server...")
|
|
print("\nAccess the application at: http://127.0.0.1:7860")
|
|
print("=" * 60 + "\n")
|
|
|
|
interface = create_interface()
|
|
interface.launch(
|
|
server_name="0.0.0.0",
|
|
server_port=7860,
|
|
share=False,
|
|
show_error=True,
|
|
show_api=False
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|