Files
LLM_Engineering_OLD/week5/community-contributions/salah/devops-ai-assistance/devops_ai_assistance.py

208 lines
7.2 KiB
Python

import os
from pathlib import Path
from typing import List, Optional
import json
import tempfile
import shutil
from langchain_core.documents import Document
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI
from langchain_classic.memory import ConversationBufferMemory
from langchain_classic.chains import ConversationalRetrievalChain
class DevOpsKnowledgeBase:
def __init__(self, knowledge_base_path: str, embedding_model: str = "all-MiniLM-L6-v2"):
self.knowledge_base_path = Path(knowledge_base_path)
self.embedding_model_name = embedding_model
self.embedding_model = None
self.vectorstore = None
self.documents = []
self.chunks = []
self.temp_db_dir = None
def load_documents(self) -> List[Document]:
self.documents = []
if not self.knowledge_base_path.exists():
raise ValueError(f"Knowledge base path does not exist: {self.knowledge_base_path}")
supported_extensions = {'.yaml', '.yml', '.md', '.txt', '.json'}
print(f"Loading documents from {self.knowledge_base_path}...")
for file_path in self.knowledge_base_path.rglob("*"):
if file_path.is_file() and file_path.suffix.lower() in supported_extensions:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read().strip()
if content and len(content) > 50:
relative_path = file_path.relative_to(self.knowledge_base_path)
doc = Document(
page_content=content,
metadata={
"source": str(relative_path),
"file_type": file_path.suffix.lower(),
"path": str(file_path)
}
)
self.documents.append(doc)
except Exception as e:
print(f"Skipped {file_path.name}: {str(e)}")
print(f"Loaded {len(self.documents)} documents")
return self.documents
def chunk_documents(self, chunk_size: int = 1000, chunk_overlap: int = 200) -> List[Document]:
if not self.documents:
raise ValueError("No documents loaded. Call load_documents() first.")
print(f"Splitting {len(self.documents)} documents into chunks...")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separators=["\n\n", "\n", " ", ""]
)
self.chunks = text_splitter.split_documents(self.documents)
print(f"Created {len(self.chunks)} chunks")
return self.chunks
def initialize_embedding_model(self):
print(f"Initializing embedding model: {self.embedding_model_name}...")
self.embedding_model = HuggingFaceEmbeddings(model_name=self.embedding_model_name)
print("Embedding model initialized")
def create_vectorstore(self) -> Chroma:
if not self.chunks:
raise ValueError("No chunks available. Call chunk_documents() first.")
if not self.embedding_model:
raise ValueError("Embedding model not initialized. Call initialize_embedding_model() first.")
print("Creating vector store...")
if self.temp_db_dir:
try:
shutil.rmtree(self.temp_db_dir)
except:
pass
self.temp_db_dir = tempfile.mkdtemp(prefix="devops_kb_")
self.vectorstore = Chroma.from_documents(
documents=self.chunks,
embedding=self.embedding_model,
persist_directory=self.temp_db_dir
)
doc_count = self.vectorstore._collection.count()
print(f"Vector store created with {doc_count} documents")
return self.vectorstore
def initialize(self):
print("Initializing DevOps Knowledge Base...")
print("=" * 60)
self.load_documents()
self.chunk_documents()
self.initialize_embedding_model()
self.create_vectorstore()
print("\nKnowledge base initialized successfully!")
return self.vectorstore
class DevOpsAIAssistant:
def __init__(self, knowledge_base_path: str, embedding_model: str = "all-MiniLM-L6-v2"):
self.knowledge_base = DevOpsKnowledgeBase(knowledge_base_path, embedding_model)
self.vectorstore = None
self.conversation_chain = None
self.memory = None
self.llm = None
def setup(self):
print("Setting up DevOps AI Assistant...")
self.vectorstore = self.knowledge_base.initialize()
api_key = os.getenv('OPENAI_API_KEY')
if not api_key:
raise ValueError("OPENAI_API_KEY environment variable not set")
print("Initializing OpenAI LLM...")
self.llm = ChatOpenAI(
model_name="gpt-4o-mini",
temperature=0.3,
api_key=api_key
)
print("Setting up conversation memory...")
self.memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
output_key='answer'
)
print("Creating conversation chain...")
retriever = self.vectorstore.as_retriever(search_kwargs={"k": 5})
self.conversation_chain = ConversationalRetrievalChain.from_llm(
llm=self.llm,
retriever=retriever,
memory=self.memory,
return_source_documents=True,
verbose=False
)
print("DevOps AI Assistant ready!")
return self
def ask(self, question: str) -> dict:
if not self.conversation_chain:
raise ValueError("Assistant not initialized. Call setup() first.")
result = self.conversation_chain.invoke({"question": question})
response = {
"answer": result.get('answer', ''),
"sources": []
}
if result.get('source_documents'):
for doc in result['source_documents']:
response["sources"].append({
"content": doc.page_content[:300],
"source": doc.metadata.get('source', 'Unknown'),
"file_type": doc.metadata.get('file_type', 'Unknown')
})
return response
def get_status(self) -> dict:
if not self.vectorstore:
return {"status": "not_initialized"}
doc_count = self.vectorstore._collection.count()
return {
"status": "ready",
"documents_loaded": len(self.knowledge_base.documents),
"chunks_created": len(self.knowledge_base.chunks),
"vectors_in_store": doc_count,
"knowledge_base_path": str(self.knowledge_base.knowledge_base_path)
}
def create_assistant(knowledge_base_path: str) -> DevOpsAIAssistant:
assistant = DevOpsAIAssistant(knowledge_base_path)
assistant.setup()
return assistant