Files
LLM_Engineering_OLD/week1/community-contributions/fernando/week1 EXERCISE.ipynb

176 lines
4.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
"metadata": {},
"source": [
"# End of week 1 exercise\n",
"\n",
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1070317-3ed9-4659-abe3-828943230e03",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"import os\n",
"from openai import OpenAI\n",
"from dotenv import load_dotenv"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
"metadata": {},
"outputs": [],
"source": [
"# constants\n",
"MODEL_GPT = 'gpt-4o-mini'\n",
"MODEL_LLAMA = 'llama3.2'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
"metadata": {},
"outputs": [],
"source": [
"# set up environment\n",
"system_prompt = \"\"\"\n",
"You are a technical expert of AI and LLMs.\n",
"\"\"\"\n",
"\n",
"user_prompt_prefix = \"\"\"\n",
"Provide deep explanations of the provided text.\n",
"\"\"\"\n",
"\n",
"user_prompt = \"\"\"\n",
"Explain the provided text.\n",
"\"\"\"\n",
"client = OpenAI()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
"metadata": {},
"outputs": [],
"source": [
"# here is the question; type over this to ask something new\n",
"\n",
"question = \"\"\"\n",
"Ollama does have an OpenAI compatible endpoint, but Gemini doesn't?\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get gpt-4o-mini to answer, with streaming\n",
"def messages_for(question):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt_prefix + question}\n",
" ]\n",
"\n",
"def run_model_streaming(model_name, question):\n",
" stream = client.chat.completions.create(\n",
" model=model_name,\n",
" messages=messages_for(question),\n",
" stream=True\n",
" )\n",
" for chunk in stream:\n",
" content = chunk.choices[0].delta.content\n",
" if content:\n",
" print(content, end=\"\", flush=True)\n",
"\n",
"run_model_streaming(MODEL_GPT, question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
"metadata": {},
"outputs": [],
"source": [
"# Get Llama 3.2 to answer\n",
"# imports\n",
"import os\n",
"from openai import OpenAI\n",
"from dotenv import load_dotenv\n",
"\n",
"# set up environment\n",
"client = OpenAI(\n",
" base_url=os.getenv(\"OPENAI_BASE_URL\", \"http://localhost:11434/v1\"),\n",
" api_key=os.getenv(\"OPENAI_API_KEY\", \"ollama\")\n",
")\n",
"\n",
"system_prompt = \"\"\"\n",
"You are a technical expert of AI and LLMs.\n",
"\"\"\"\n",
"\n",
"user_prompt_prefix = \"\"\"\n",
"Provide deep explanations of the provided text.\n",
"\"\"\"\n",
"\n",
"# question\n",
"question = \"\"\"\n",
"Ollama does have an OpenAI compatible endpoint, but Gemini doesn't?\n",
"\"\"\"\n",
"\n",
"# message\n",
"def messages_for(question):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt_prefix + question}\n",
" ]\n",
"\n",
"# response\n",
"def run_model(model_name, question):\n",
" response = client.chat.completions.create(\n",
" model=model_name,\n",
" messages=messages_for(question)\n",
" )\n",
" return response.choices[0].message.content\n",
"\n",
"# run and print result\n",
"print(run_model(MODEL_LLAMA, question))\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}