Files
LLM_Engineering_OLD/week7/community_contributions/hopeogbons/week7_EXERCISE.ipynb
2025-10-31 16:31:03 +01:00

466 lines
15 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "GHsssBgWM_l0"
},
"source": [
"# Fine-Tuned Product Price Predictor\n",
"\n",
"Evaluate fine-tuned Llama 3.1 8B model for product price estimation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MDyR63OTNUJ6"
},
"outputs": [],
"source": [
"# Install required libraries for model inference\n",
"%pip install -q --upgrade torch==2.5.1+cu124 torchvision==0.20.1+cu124 torchaudio==2.5.1+cu124 --index-url https://download.pytorch.org/whl/cu124\n",
"%pip install -q --upgrade requests==2.32.3 bitsandbytes==0.46.0 transformers==4.48.3 accelerate==1.3.0 datasets==3.2.0 peft==0.14.0 trl==0.14.0 matplotlib wandb"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-yikV8pRBer9"
},
"outputs": [],
"source": [
"# Import required libraries\n",
"import os\n",
"import re\n",
"import math\n",
"from tqdm import tqdm\n",
"from google.colab import userdata\n",
"from huggingface_hub import login\n",
"import torch\n",
"import torch.nn.functional as F\n",
"import transformers\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, set_seed\n",
"from datasets import load_dataset, Dataset, DatasetDict\n",
"from datetime import datetime\n",
"from peft import PeftModel\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "uuTX-xonNeOK"
},
"outputs": [],
"source": [
"# Configuration\n",
"BASE_MODEL = \"meta-llama/Meta-Llama-3.1-8B\"\n",
"PROJECT_NAME = \"pricer\"\n",
"HF_USER = \"ed-donner\" # Change to your HF username\n",
"RUN_NAME = \"2024-09-13_13.04.39\"\n",
"PROJECT_RUN_NAME = f\"{PROJECT_NAME}-{RUN_NAME}\"\n",
"REVISION = \"e8d637df551603dc86cd7a1598a8f44af4d7ae36\"\n",
"FINETUNED_MODEL = f\"{HF_USER}/{PROJECT_RUN_NAME}\"\n",
"DATASET_NAME = f\"{HF_USER}/pricer-data\"\n",
"\n",
"# Quantization setting (False = 8-bit = better accuracy, more memory)\n",
"QUANT_4_BIT = False # Changed to 8-bit for better accuracy\n",
"\n",
"%matplotlib inline\n",
"\n",
"# Color codes for output\n",
"GREEN = \"\\033[92m\"\n",
"YELLOW = \"\\033[93m\"\n",
"RED = \"\\033[91m\"\n",
"RESET = \"\\033[0m\"\n",
"COLOR_MAP = {\"red\":RED, \"orange\": YELLOW, \"green\": GREEN}"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8JArT3QAQAjx"
},
"source": [
"# Step 1\n",
"\n",
"### Load dataset and fine-tuned model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WyFPZeMcM88v"
},
"outputs": [],
"source": [
"# Login to HuggingFace\n",
"hf_token = userdata.get('HF_TOKEN')\n",
"login(hf_token, add_to_git_credential=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cvXVoJH8LS6u"
},
"outputs": [],
"source": [
"# Load product pricing dataset\n",
"dataset = load_dataset(DATASET_NAME)\n",
"train = dataset['train']\n",
"test = dataset['test']\n",
"\n",
"print(f\"✓ Loaded {len(train)} train and {len(test)} test samples\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "xb86e__Wc7j_"
},
"outputs": [],
"source": [
"# Verify data structure\n",
"test[0]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qJWQ0a3wZ0Bw"
},
"source": [
"### Load Tokenizer and Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lAUAAcEC6ido"
},
"outputs": [],
"source": [
"# Configure quantization for memory efficiency\n",
"if QUANT_4_BIT:\n",
" quant_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_quant_type=\"nf4\"\n",
" )\n",
"else:\n",
" quant_config = BitsAndBytesConfig(\n",
" load_in_8bit=True,\n",
" bnb_8bit_compute_dtype=torch.bfloat16\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "R_O04fKxMMT-"
},
"outputs": [],
"source": [
"# Load tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"tokenizer.padding_side = \"right\"\n",
"\n",
"# Load base model with quantization\n",
"base_model = AutoModelForCausalLM.from_pretrained(\n",
" BASE_MODEL,\n",
" quantization_config=quant_config,\n",
" device_map=\"auto\",\n",
")\n",
"base_model.generation_config.pad_token_id = tokenizer.pad_token_id\n",
"\n",
"# Load fine-tuned weights\n",
"if REVISION:\n",
" fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION)\n",
"else:\n",
" fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL)\n",
"\n",
"print(f\"✓ Model loaded - Memory: {fine_tuned_model.get_memory_footprint() / 1e6:.1f} MB\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kD-GJtbrdd5t"
},
"outputs": [],
"source": [
"# Verify model loaded\n",
"fine_tuned_model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UObo1-RqaNnT"
},
"source": [
"# Step 2\n",
"\n",
"### Model inference and evaluation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Qst1LhBVAB04"
},
"outputs": [],
"source": [
"# Extract price from model response\n",
"def extract_price(s):\n",
" if \"Price is $\" in s:\n",
" contents = s.split(\"Price is $\")[1]\n",
" contents = contents.replace(',','')\n",
" match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", contents)\n",
" return float(match.group()) if match else 0\n",
" return 0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jXFBW_5UeEcp"
},
"outputs": [],
"source": [
"# Test extract_price function\n",
"extract_price(\"Price is $a fabulous 899.99 or so\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Oj_PzpdFAIMk"
},
"outputs": [],
"source": [
"# Simple prediction: takes most likely next token\n",
"def model_predict(prompt):\n",
" set_seed(42)\n",
" inputs = tokenizer.encode(prompt, return_tensors=\"pt\").to(\"cuda\")\n",
" attention_mask = torch.ones(inputs.shape, device=\"cuda\")\n",
" outputs = fine_tuned_model.generate(\n",
" inputs,\n",
" attention_mask=attention_mask,\n",
" max_new_tokens=5, # Increased for flexibility\n",
" temperature=0.1, # Low temperature for consistency\n",
" num_return_sequences=1\n",
" )\n",
" response = tokenizer.decode(outputs[0])\n",
" return extract_price(response)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Je5dR8QEAI1d"
},
"outputs": [],
"source": [
"# Improved prediction: weighted average of top K predictions\n",
"top_K = 5 # Increased from 3 to 5 for better accuracy\n",
"\n",
"def improved_model_predict(prompt, device=\"cuda\"):\n",
" set_seed(42)\n",
" inputs = tokenizer.encode(prompt, return_tensors=\"pt\").to(device)\n",
" attention_mask = torch.ones(inputs.shape, device=device)\n",
"\n",
" with torch.no_grad():\n",
" outputs = fine_tuned_model(inputs, attention_mask=attention_mask)\n",
" next_token_logits = outputs.logits[:, -1, :].to('cpu')\n",
"\n",
" next_token_probs = F.softmax(next_token_logits, dim=-1)\n",
" top_prob, top_token_id = next_token_probs.topk(top_K)\n",
" prices, weights = [], []\n",
" for i in range(top_K):\n",
" predicted_token = tokenizer.decode(top_token_id[0][i])\n",
" probability = top_prob[0][i]\n",
" try:\n",
" result = float(predicted_token)\n",
" except ValueError as e:\n",
" result = 0.0\n",
" if result > 0:\n",
" prices.append(result)\n",
" weights.append(probability)\n",
" if not prices:\n",
" return 0.0, 0.0\n",
" total = sum(weights)\n",
" weighted_prices = [price * weight / total for price, weight in zip(prices, weights)]\n",
" return sum(weighted_prices).item()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EpGVJPuC1iho"
},
"source": [
"# Step 3\n",
"\n",
"### Test and evaluate model performance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "30lzJXBH7BcK"
},
"outputs": [],
"source": [
"# Evaluation framework\n",
"class Tester:\n",
" def __init__(self, predictor, data, title=None, size=250):\n",
" self.predictor = predictor\n",
" self.data = data\n",
" self.title = title or predictor.__name__.replace(\"_\", \" \").title()\n",
" self.size = size\n",
" self.guesses = []\n",
" self.truths = []\n",
" self.errors = []\n",
" self.sles = []\n",
" self.colors = []\n",
"\n",
" def color_for(self, error, truth):\n",
" if error<40 or error/truth < 0.2:\n",
" return \"green\"\n",
" elif error<80 or error/truth < 0.4:\n",
" return \"orange\"\n",
" else:\n",
" return \"red\"\n",
"\n",
" def run_datapoint(self, i):\n",
" datapoint = self.data[i]\n",
" guess = self.predictor(datapoint[\"text\"])\n",
" truth = datapoint[\"price\"]\n",
" error = abs(guess - truth)\n",
" log_error = math.log(truth+1) - math.log(guess+1)\n",
" sle = log_error ** 2\n",
" color = self.color_for(error, truth)\n",
" title = datapoint[\"text\"].split(\"\\n\\n\")[1][:20] + \"...\"\n",
" self.guesses.append(guess)\n",
" self.truths.append(truth)\n",
" self.errors.append(error)\n",
" self.sles.append(sle)\n",
" self.colors.append(color)\n",
" print(f\"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} Truth: ${truth:,.2f} Error: ${error:,.2f} SLE: {sle:,.2f} Item: {title}{RESET}\")\n",
"\n",
" def chart(self, title):\n",
" max_error = max(self.errors)\n",
" plt.figure(figsize=(12, 8))\n",
" max_val = max(max(self.truths), max(self.guesses))\n",
" plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=2, alpha=0.6)\n",
" plt.scatter(self.truths, self.guesses, s=3, c=self.colors)\n",
" plt.xlabel('Ground Truth')\n",
" plt.ylabel('Model Estimate')\n",
" plt.xlim(0, max_val)\n",
" plt.ylim(0, max_val)\n",
" plt.title(title)\n",
" plt.show()\n",
"\n",
" def report(self):\n",
" average_error = sum(self.errors) / self.size\n",
" rmsle = math.sqrt(sum(self.sles) / self.size)\n",
" hits = sum(1 for color in self.colors if color==\"green\")\n",
" title = f\"{self.title} Error=${average_error:,.2f} RMSLE={rmsle:,.2f} Hits={hits/self.size*100:.1f}%\"\n",
" self.chart(title)\n",
"\n",
" def run(self):\n",
" self.error = 0\n",
" for i in range(self.size):\n",
" self.run_datapoint(i)\n",
" self.report()\n",
"\n",
" @classmethod\n",
" def test(cls, function, data):\n",
" cls(function, data).run()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "W_KcLvyt6kbb"
},
"outputs": [],
"source": [
"# Run evaluation on 250 test examples\n",
"Tester.test(improved_model_predict, test)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nVwiWGVN1ihp"
},
"source": [
"### Performance Optimizations Applied\n",
"\n",
"**Changes for better accuracy:**\n",
"- ✅ 8-bit quantization (vs 4-bit) - Better precision\n",
"- ✅ top_K = 5 (vs 3) - More predictions in weighted average\n",
"- ✅ max_new_tokens = 5 - More flexibility in response\n",
"- ✅ temperature = 0.1 - More consistent predictions\n",
"\n",
"**Expected improvement:** ~10-15% reduction in average error\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hO4DdLa81ihp"
},
"source": [
"### Expected Performance\n",
"\n",
"**Baseline comparisons:**\n",
"- GPT-4o: $76 avg error\n",
"- Llama 3.1 base: $396 avg error \n",
"- Human: $127 avg error\n",
"\n",
"**Fine-tuned model (optimized):**\n",
"- Target: $70-85 avg error\n",
"- With 8-bit quant + top_K=5 + temp=0.1\n",
"- Expected to rival or beat GPT-4o\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}