Files
LLM_Engineering_OLD/week1/community-contributions/day5_challenge_exercise/day5_exercise.ipynb
2025-07-13 16:11:28 -04:00

192 lines
5.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "75e66023-eccf-46a9-8b70-7b21ede16ddd",
"metadata": {},
"source": [
"# End of week 1 exercise\n",
"\n",
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "72d21373-edbd-4432-a29d-db8e6c9c5808",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI\n",
"import ollama"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4e4c15b-7ae8-43e9-839d-7cc49345be5a",
"metadata": {},
"outputs": [],
"source": [
"!ollama pull llama3.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7fb44166-1c65-42fc-9950-1960bc3cc432",
"metadata": {},
"outputs": [],
"source": [
"# constants\n",
"\n",
"MODEL_GPT = 'gpt-4o-mini'\n",
"MODEL_LLAMA = 'llama3.2'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58f5f1e1-5296-4631-9698-8645d4621a0c",
"metadata": {},
"outputs": [],
"source": [
"# set up environment\n",
"\n",
"# Get the openai key\n",
"\n",
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if openai_api_key and openai_api_key.startswith('sk-proj-') and len(openai_api_key)>10:\n",
" print(\"API key looks good so far\")\n",
"else:\n",
" print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n",
"\n",
"openai = OpenAI()\n",
"# Get the ollama key using the llama model\n",
"\n",
"ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12f07b33-76b9-42fa-9962-21f2a5796126",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"You are a knowledgeable technical instructor who helps students understand \\\n",
"complex concepts across a wide range of technical topics. Your expertise includes artificial]\\\n",
"intelligence, machine learning, large language models (LLMs), and programming in languages \\\n",
"such as Python, JavaScript, Java, and more. You also provide in-depth support for \\\n",
"AI engineering questions and other advanced technical subjects.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "330abeb7-7db2-4f23-9d19-dd698058a400",
"metadata": {},
"outputs": [],
"source": [
"# here is the question; type over this to ask something new\n",
"\n",
"question = \"\"\"\n",
"Please explain what this code does and why:\n",
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd11ad48-91ec-4cdf-9c57-99a0451e7a2f",
"metadata": {},
"outputs": [],
"source": [
"# Get gpt-4o-mini to answer, with streaming\n",
"stream_GPT = openai.chat.completions.create(\n",
" model=MODEL_GPT,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": question}\n",
" ],\n",
" stream = True\n",
" )\n",
"response_GPT = \"\"\n",
"display_handle = display(Markdown(\"\"), display_id=True)\n",
"for chunk in stream_GPT:\n",
" response_GPT += chunk.choices[0].delta.content or ''\n",
" response_GPT = response_GPT.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
" update_display(Markdown(response_GPT), display_id=display_handle.display_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd2527ae-0d75-4f15-a45f-92075e3059d6",
"metadata": {},
"outputs": [],
"source": [
"# Get Llama 3.2 to answer\n",
"\n",
"response_llama = ollama_via_openai.chat.completions.create(\n",
" model=MODEL_LLAMA,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": question}\n",
" ],\n",
" )\n",
"result = response_llama.choices[0].message.content\n",
"\n",
"display(Markdown(result))\n",
"\n",
"# import ollama\n",
"\n",
"# response = ollama.chat(model=MODEL_LLAMA, messages=[\n",
"# {\"role\": \"system\", \"content\": system_prompt},\n",
"# {\"role\": \"user\", \"content\": question}\n",
"# ])\n",
"# print(response['message']['content'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2747739-ba64-4067-902f-c1acc0dbdaca",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}