301 lines
12 KiB
Python
301 lines
12 KiB
Python
import asyncio
|
|
from playwright.async_api import async_playwright
|
|
from openai import OpenAI
|
|
import logging
|
|
import random
|
|
import time
|
|
import os
|
|
from prometheus_client import start_http_server, Counter, Histogram
|
|
from diskcache import Cache
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
# Setting up Prometheus metrics
|
|
SCRAPE_ATTEMPTS = Counter('scrape_attempts', 'Total scraping attempts')
|
|
SCRAPE_DURATION = Histogram(
|
|
'scrape_duration', 'Scraping duration distribution')
|
|
|
|
# Setting up cache
|
|
cache = Cache('./scraper_cache')
|
|
|
|
|
|
class ScrapingError(Exception):
|
|
pass
|
|
|
|
|
|
class ContentAnalysisError(Exception):
|
|
pass
|
|
|
|
|
|
class EnhancedOpenAIScraper:
|
|
API_KEY = os.getenv("OPENAI_API_KEY")
|
|
BROWSER_EXECUTABLE = os.getenv(
|
|
"BROWSER_PATH", "/usr/bin/chromium-browser")
|
|
MAX_CONTENT_LENGTH = int(os.getenv("MAX_CONTENT_LENGTH", 30000))
|
|
|
|
def __init__(self, headless=True):
|
|
self.user_agents = [
|
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
|
]
|
|
self.timeout = 45000 # 45 seconds
|
|
self.retry_count = int(os.getenv("RETRY_COUNT", 2))
|
|
self.headless = headless
|
|
self.mouse_velocity_range = (100, 500) # px/ms
|
|
self.interaction_delays = {
|
|
'scroll': (int(os.getenv("SCROLL_DELAY_MIN", 500)), int(os.getenv("SCROLL_DELAY_MAX", 2000))),
|
|
'click': (int(os.getenv("CLICK_DELAY_MIN", 100)), int(os.getenv("CLICK_DELAY_MAX", 300))),
|
|
'movement': (int(os.getenv("MOVEMENT_DELAY_MIN", 50)), int(os.getenv("MOVEMENT_DELAY_MAX", 200)))
|
|
}
|
|
self.proxy_servers = [server.strip() for server in os.getenv(
|
|
"PROXY_SERVERS", "").split(',') if server.strip()]
|
|
|
|
async def human_interaction(self, page):
|
|
"""Advanced simulation of user behavior"""
|
|
# Random mouse movement path
|
|
for _ in range(random.randint(2, 5)):
|
|
x = random.randint(0, 1366)
|
|
y = random.randint(0, 768)
|
|
await page.mouse.move(x, y, steps=random.randint(5, 20))
|
|
await page.wait_for_timeout(random.randint(*self.interaction_delays['movement']))
|
|
|
|
# Simulating typing
|
|
if random.random() < 0.3:
|
|
await page.keyboard.press('Tab')
|
|
await page.keyboard.type(' ', delay=random.randint(50, 200))
|
|
|
|
# More realistic scrolling
|
|
scroll_distance = random.choice([300, 600, 900])
|
|
await page.mouse.wheel(0, scroll_distance)
|
|
await page.wait_for_timeout(random.randint(*self.interaction_delays['scroll']))
|
|
|
|
async def load_page(self, page, url):
|
|
"""Smarter page loading with dynamic waiting"""
|
|
start_time = time.time()
|
|
try:
|
|
await page.goto(url, wait_until="domcontentloaded", timeout=self.timeout)
|
|
|
|
# Smarter content extraction selectors
|
|
selectors = [
|
|
'main article',
|
|
'#main-content',
|
|
'section:first-of-type',
|
|
'div[class*="content"]',
|
|
'body' # Fallback
|
|
]
|
|
|
|
for selector in selectors:
|
|
try:
|
|
element = await page.query_selector(selector)
|
|
if element:
|
|
return True
|
|
except Exception:
|
|
continue
|
|
|
|
# Fallback if no selector is found within a certain time
|
|
if time.time() - start_time < 30: # If we haven't used the full timeout
|
|
await page.wait_for_timeout(30000 - int(time.time() - start_time))
|
|
|
|
return True # Page likely loaded
|
|
except Exception as e:
|
|
logging.error(f"Error loading page {url}: {e}")
|
|
return False
|
|
|
|
@SCRAPE_DURATION.time()
|
|
async def scrape_with_retry(self):
|
|
"""Main function with retry mechanism and browser reuse"""
|
|
SCRAPE_ATTEMPTS.inc()
|
|
last_error = None
|
|
browser = None
|
|
context = None
|
|
page = None
|
|
|
|
try:
|
|
async with async_playwright() as p:
|
|
launch_args = {
|
|
"headless": self.headless,
|
|
"args": [
|
|
"--disable-blink-features=AutomationControlled",
|
|
"--single-process",
|
|
"--no-sandbox",
|
|
f"--user-agent={random.choice(self.user_agents)}"
|
|
],
|
|
"executable_path": self.BROWSER_EXECUTABLE
|
|
}
|
|
if self.proxy_servers:
|
|
proxy_url = random.choice(self.proxy_servers)
|
|
proxy_config = {"server": proxy_url}
|
|
proxy_username = os.getenv('PROXY_USER')
|
|
proxy_password = os.getenv('PROXY_PASS')
|
|
if proxy_username and proxy_password:
|
|
proxy_config['username'] = proxy_username
|
|
proxy_config['password'] = proxy_password
|
|
launch_args['proxy'] = proxy_config
|
|
|
|
browser = await p.chromium.launch(**launch_args)
|
|
context = await browser.new_context(
|
|
user_agent=random.choice(self.user_agents),
|
|
viewport={"width": 1366, "height": 768},
|
|
locale=os.getenv("BROWSER_LOCALE", "en-US")
|
|
)
|
|
await context.route("**/*", lambda route: route.continue_())
|
|
page = await context.new_page()
|
|
await page.add_init_script("""
|
|
Object.defineProperty(navigator, 'webdriver', { get: () => false });
|
|
window.navigator.chrome = { runtime: {}, app: { isInstalled: false } };
|
|
""")
|
|
|
|
for attempt in range(self.retry_count):
|
|
try:
|
|
logging.info(
|
|
f"Attempt {attempt + 1}: Loading OpenAI...")
|
|
if not await self.load_page(page, "https://openai.com"):
|
|
raise ScrapingError(
|
|
"Failed to load key content on OpenAI website.")
|
|
await self.human_interaction(page)
|
|
await page.screenshot(path=f"openai_debug_{attempt}.png")
|
|
content = await page.evaluate("""() => {
|
|
const selectors = [
|
|
'main article',
|
|
'#main-content',
|
|
'section:first-of-type',
|
|
'div[class*="content"]'
|
|
];
|
|
|
|
let content = '';
|
|
for (const selector of selectors) {
|
|
const element = document.querySelector(selector);
|
|
if (element) {
|
|
content += element.innerText + '\\n\\n';
|
|
}
|
|
}
|
|
return content.trim() || document.body.innerText;
|
|
}""")
|
|
if not content.strip():
|
|
raise ContentAnalysisError(
|
|
"No content extracted from the page.")
|
|
return content[:self.MAX_CONTENT_LENGTH]
|
|
|
|
except (ScrapingError, ContentAnalysisError) as e:
|
|
last_error = e
|
|
logging.warning(
|
|
f"Attempt {attempt + 1} failed: {str(e)}")
|
|
if attempt < self.retry_count - 1:
|
|
await asyncio.sleep(5)
|
|
else:
|
|
if browser:
|
|
await browser.close()
|
|
browser = None
|
|
raise
|
|
except Exception as e:
|
|
last_error = e
|
|
logging.exception(f"Unexpected error on attempt {
|
|
attempt + 1}: {str(e)}")
|
|
if attempt < self.retry_count - 1:
|
|
await asyncio.sleep(5)
|
|
else:
|
|
if browser:
|
|
await browser.close()
|
|
browser = None
|
|
raise
|
|
|
|
except Exception as e:
|
|
last_error = e
|
|
finally:
|
|
if browser:
|
|
await browser.close()
|
|
|
|
raise last_error if last_error else Exception(
|
|
"All scraping attempts failed.")
|
|
|
|
async def get_cached_content(self):
|
|
key = 'openai_content_cache_key'
|
|
content = cache.get(key)
|
|
if content is None:
|
|
content = await self.scrape_with_retry()
|
|
cache.set(key, content, expire=int(
|
|
os.getenv("CACHE_EXPIRY", 3600)))
|
|
return content
|
|
|
|
|
|
async def analyze_content(headless=True):
|
|
try:
|
|
scraper = EnhancedOpenAIScraper(headless=headless)
|
|
content = await scraper.get_cached_content()
|
|
|
|
client = OpenAI(api_key=EnhancedOpenAIScraper.API_KEY)
|
|
if not client.api_key:
|
|
raise ContentAnalysisError(
|
|
"OpenAI API key not configured (check environment variables).")
|
|
|
|
prompt_template = """
|
|
Analyze the following website content and extract the following information if present:
|
|
|
|
1. **Overall Summary of the Website:** Provide a concise overview of the website's purpose and the main topics discussed.
|
|
2. **Key Individuals or Entities:** Identify and briefly describe any prominent individuals, companies, or organizations mentioned.
|
|
3. **Recent Announcements or Updates:** List any recent announcements, news, or updates found on the website, including dates if available.
|
|
4. **Main Topics or Themes:** Identify the primary subjects or themes explored on the website.
|
|
5. **Any Noteworthy Features or Projects:** Highlight any significant features, projects, or initiatives mentioned.
|
|
|
|
Format the output clearly under each of these headings. If a particular piece of information is not found, indicate that it is not present.
|
|
|
|
Content:
|
|
{content}
|
|
"""
|
|
|
|
formatted_prompt = prompt_template.format(content=content)
|
|
model_name = os.getenv("OPENAI_MODEL", "gpt-4-turbo")
|
|
temperature = float(os.getenv("MODEL_TEMPERATURE", 0.3))
|
|
max_tokens = int(os.getenv("MAX_TOKENS", 1500))
|
|
top_p = float(os.getenv("MODEL_TOP_P", 0.9))
|
|
|
|
response = client.chat.completions.create(
|
|
model=model_name,
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful assistant that analyzes website content and extracts key information in a structured format."},
|
|
{"role": "user", "content": formatted_prompt}
|
|
],
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
top_p=top_p
|
|
)
|
|
|
|
if not response.choices:
|
|
raise ContentAnalysisError("Empty response from GPT.")
|
|
|
|
return response.choices[0].message.content
|
|
|
|
except (ScrapingError, ContentAnalysisError) as e:
|
|
logging.error(f"Analysis failed: {str(e)}")
|
|
return f"Critical analysis error: {str(e)}"
|
|
except Exception as e:
|
|
logging.exception("Unexpected error during analysis.")
|
|
return f"Unexpected analysis error: {str(e)}"
|
|
|
|
|
|
async def main():
|
|
logging.basicConfig(
|
|
level=os.getenv("LOG_LEVEL", "INFO").upper(),
|
|
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
)
|
|
|
|
# Start Prometheus HTTP server for exposing metrics
|
|
try:
|
|
prometheus_port = int(os.getenv("PROMETHEUS_PORT", 8000))
|
|
start_http_server(prometheus_port)
|
|
logging.info(f"Prometheus metrics server started on port {
|
|
prometheus_port}")
|
|
except Exception as e:
|
|
logging.warning(f"Failed to start Prometheus metrics server: {e}")
|
|
|
|
start_time = time.time()
|
|
result = await analyze_content(headless=True)
|
|
end_time = time.time()
|
|
|
|
print(f"\nAnalysis completed in {end_time - start_time:.2f} seconds\n")
|
|
print(result)
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|