226 lines
7.1 KiB
Plaintext
226 lines
7.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d006b2ea-9dfe-49c7-88a9-a5a0775185fd",
|
|
"metadata": {},
|
|
"source": [
|
|
"# A tool to evaluate a mathematical expression\n",
|
|
"\n",
|
|
"This week the tool used in FlightAI was a database lookup function.\n",
|
|
"\n",
|
|
"Here I implement a python code interpreter function as tool."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7b0e8691-71f9-486c-859d-ea371401dfa9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import json\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"from openai import OpenAI\n",
|
|
"import gradio as gr"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8e2792ae-ff53-4b83-b2c3-866533ba2b29",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Load environment variables in a file called .env\n",
|
|
"# Print the key prefixes to help with any debugging\n",
|
|
"\n",
|
|
"load_dotenv()\n",
|
|
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
|
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
|
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
|
"\n",
|
|
"if openai_api_key:\n",
|
|
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
|
"else:\n",
|
|
" print(\"OpenAI API Key not set\")\n",
|
|
" \n",
|
|
"if anthropic_api_key:\n",
|
|
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
|
"else:\n",
|
|
" print(\"Anthropic API Key not set\")\n",
|
|
"\n",
|
|
"if google_api_key:\n",
|
|
" print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
|
|
"else:\n",
|
|
" print(\"Google API Key not set\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "79e44ee9-af02-448c-a747-17780ee55791",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"openai = OpenAI()\n",
|
|
"MODEL = \"gpt-4o-mini\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "33ec55b1-0eff-43f1-9346-28145fa2fc47",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Defining the tool function\n",
|
|
"\n",
|
|
"Add print statements to make sure the function is used instead of the native gpt interpreter capability.\n",
|
|
"\n",
|
|
"I used multi shot in the system prompt to make sure gpt generate the code in the format that the tool accept."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "94e0e171-4975-457b-88cb-c0d90f51ca65",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def evaluate_math_expression(my_code):\n",
|
|
" print(f\"EXECUTING FUNCTION WITH CODE: {my_code}\")\n",
|
|
" exec(my_code)\n",
|
|
" r = locals()['interpreter_result'] \n",
|
|
" return r\n",
|
|
"\n",
|
|
"\n",
|
|
"math_function = {\n",
|
|
" \"name\": \"evaluate_math_expression\",\n",
|
|
" \"description\": \"Give the result of a math expression. \\\n",
|
|
" Call this whenever you need to know the result of a mathematical expression. \\\n",
|
|
" Generate python code ALWAYS with the final result assigned to a variable called 'interpreter_result'. \\\n",
|
|
" For example when a user asks 'What is 2+2' generate 'interpreter_result = 2+2', and pass this code to the tool. \\\n",
|
|
" Another example if a user ask 'What is log(5)' generate 'import math; interpreter_result = math.log(5)' and pass this code to the tool.\",\n",
|
|
" \n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"my_code\": {\n",
|
|
" \"type\": \"string\",\n",
|
|
" \"description\": \"The python math expression to evaluate\",\n",
|
|
" },\n",
|
|
" },\n",
|
|
" \"required\": [\"my_code\"],\n",
|
|
" \"additionalProperties\": False\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"tools = [{\"type\": \"function\", \"function\": math_function}]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c85c01cc-776e-4a9d-b506-ea0d68fc072d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"evaluate_math_expression(\"import math; interpreter_result = math.log(5)\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "858c5848-5835-4dff-9dc0-68babd367e11",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Using the tool in a UI program\n",
|
|
"\n",
|
|
"You can ask messages like:\n",
|
|
"- \"What is 2+2?\"\n",
|
|
"- \"What is 3 power 2?\"\n",
|
|
"- \"I have 25 apples. I buy 10 apples. How manny apples do I have?\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c119b48b-d4b4-41ae-aa2f-2ec2f09af2f0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"system_message = \"You are a math assistant. \\\n",
|
|
"Generate python code to give result of a math expression, always name the result 'interpreter_result'. \\\n",
|
|
"For example when a user asks 'What is 2+2', generate 'interpreter_result = 2+2' and pass this code to the tool. \\\n",
|
|
"Another example: if a user ask 'What is log(5)' generate 'import math; interpreter_result = math.log(5)'\"\n",
|
|
"\n",
|
|
"def chat(message, history):\n",
|
|
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
|
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
|
|
"\n",
|
|
" if response.choices[0].finish_reason==\"tool_calls\":\n",
|
|
" message = response.choices[0].message\n",
|
|
" print(message)\n",
|
|
" response = handle_tool_call(message)\n",
|
|
" print(response)\n",
|
|
" messages.append(message)\n",
|
|
" messages.append(response)\n",
|
|
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
|
|
" \n",
|
|
" return response.choices[0].message.content\n",
|
|
"\n",
|
|
"\n",
|
|
"def handle_tool_call(message):\n",
|
|
" tool_call = message.tool_calls[0]\n",
|
|
" arguments = json.loads(tool_call.function.arguments)\n",
|
|
" my_code = arguments.get('my_code')\n",
|
|
" interpreter_result = evaluate_math_expression(my_code)\n",
|
|
" response = {\n",
|
|
" \"role\": \"tool\",\n",
|
|
" \"content\": json.dumps({\"my_code\": my_code,\"interpreter_result\": interpreter_result}),\n",
|
|
" \"tool_call_id\": tool_call.id\n",
|
|
" }\n",
|
|
" return response"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a3e50093-d7b6-4972-a8ba-6964f22218d3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "75c81d73-d2d6-4e6b-8511-94d4a725f595",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|