184 lines
4.6 KiB
Plaintext
184 lines
4.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "de3b5d4c",
|
|
"metadata": {},
|
|
"source": [
|
|
"# 🧠 Grafana Dashboard Summarizer\n",
|
|
"Simulate reading a Grafana dashboard JSON and summarize its panels using GPT or plain logic."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0abf3aaf",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"from IPython.display import Markdown, display\n",
|
|
"from openai import OpenAI\n",
|
|
"import json\n",
|
|
"import pandas as pd"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "ad82ca65",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"with open(\"mock_grafana_dashboard.json\", \"r\") as f:\n",
|
|
" data = json.load(f)\n",
|
|
"\n",
|
|
"dashboard = data[\"dashboard\"]\n",
|
|
"panels = dashboard[\"panels\"]\n",
|
|
"print(f\"Dashboard Title: {dashboard['title']}\")\n",
|
|
"print(f\"Total Panels: {len(panels)}\\n\")\n",
|
|
"for p in panels:\n",
|
|
" print(f\"- {p['title']} ({p['type']})\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1bf45c0f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Extracting panel data\n",
|
|
"\n",
|
|
"panel_data = []\n",
|
|
"for p in panels:\n",
|
|
" thresholds = p.get(\"fieldConfig\", {}).get(\"defaults\", {}).get(\"thresholds\", {}).get(\"steps\", [])\n",
|
|
" panel_data.append({\n",
|
|
" \"Title\": p[\"title\"],\n",
|
|
" \"Type\": p[\"type\"],\n",
|
|
" \"Unit\": p.get(\"fieldConfig\", {}).get(\"defaults\", {}).get(\"unit\", \"N/A\"),\n",
|
|
" \"Thresholds\": thresholds\n",
|
|
" })\n",
|
|
"\n",
|
|
"df = pd.DataFrame(panel_data)\n",
|
|
"df\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "90b67133",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"summary_prompt = f\"\"\"\n",
|
|
"You are a helpful assistant summarizing a system monitoring dashboard.\n",
|
|
"\n",
|
|
"Dashboard: {dashboard['title']}\n",
|
|
"Panels:\n",
|
|
"\"\"\"\n",
|
|
"for idx, row in df.iterrows():\n",
|
|
" summary_prompt += f\"- {row['Title']} [{row['Type']}] - Unit: {row['Unit']}, Thresholds: {row['Thresholds']}\\n\"\n",
|
|
"\n",
|
|
"print(summary_prompt)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "69a4208c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"load_dotenv(override=True)\n",
|
|
"api_key = os.getenv('OPENAI_API_KEY')\n",
|
|
"# Check the key\n",
|
|
"\n",
|
|
"if not api_key:\n",
|
|
" print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
|
|
"elif not api_key.startswith(\"sk-proj-\"):\n",
|
|
" print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
|
|
"elif api_key.strip() != api_key:\n",
|
|
" print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
|
|
"else:\n",
|
|
" print(\"API key found and looks good so far!\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2eee5a32",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"openai = OpenAI()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "660eedb7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def summarize():\n",
|
|
" response = openai.chat.completions.create(\n",
|
|
" model=\"gpt-4o-mini\",\n",
|
|
" messages=[\n",
|
|
" {\"role\": \"system\", \"content\": \"You are a Grafana dashboard summarizer.\"},\n",
|
|
" {\"role\": \"user\", \"content\": summary_prompt}\n",
|
|
" ]\n",
|
|
")\n",
|
|
" return response.choices[0].message.content"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "55f57d56",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"summary = summarize()\n",
|
|
"display(Markdown(summary))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "10dbfd6c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "arunllms",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|