86 lines
3.4 KiB
Python
86 lines
3.4 KiB
Python
import openai # type: ignore
|
|
import ollama
|
|
import requests
|
|
from utils.config import Config
|
|
|
|
# Local Ollama API endpoint
|
|
OLLAMA_API = "http://127.0.0.1:11434/api/chat"
|
|
|
|
# Initialize OpenAI client with API key
|
|
client = openai.Client(api_key=Config.OPENAI_API_KEY)
|
|
|
|
def summarize_with_openai(text, model):
|
|
"""Summarize text using OpenAI's GPT model."""
|
|
try:
|
|
response = client.chat.completions.create(
|
|
model=model,
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful assistant that summarizes web pages."},
|
|
{"role": "user", "content": f"Summarize the following text: {text}"}
|
|
],
|
|
max_tokens=300,
|
|
temperature=0.7
|
|
)
|
|
return response.choices[0].message.content
|
|
except Exception as e:
|
|
print(f"Error during OpenAI summarization: {e}")
|
|
return None
|
|
|
|
def summarize_with_ollama_lib(text, model):
|
|
"""Summarize text using Ollama Python library."""
|
|
try:
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant that summarizes web pages."},
|
|
{"role": "user", "content": f"Summarize the following text: {text}"}
|
|
]
|
|
response = ollama.chat(model=model, messages=messages)
|
|
return response['message']['content']
|
|
except Exception as e:
|
|
print(f"Error during Ollama summarization: {e}")
|
|
return None
|
|
|
|
def summarize_with_ollama_api(text, model):
|
|
"""Summarize text using local Ollama API."""
|
|
try:
|
|
payload = {
|
|
"model": model,
|
|
"messages": [
|
|
{"role": "system", "content": "You are a helpful assistant that summarizes web pages."},
|
|
{"role": "user", "content": f"Summarize the following text: {text}"}
|
|
],
|
|
"stream": False # Set to True for streaming responses
|
|
}
|
|
response = requests.post(OLLAMA_API, json=payload)
|
|
response_data = response.json()
|
|
return response_data.get('message', {}).get('content', 'No summary generated')
|
|
except Exception as e:
|
|
print(f"Error during Ollama API summarization: {e}")
|
|
return None
|
|
|
|
def summarize_text(text, model, engine="openai"):
|
|
"""Generic function to summarize text using the specified engine (openai/ollama-lib/ollama-api)."""
|
|
if engine == "openai":
|
|
return summarize_with_openai(text, model)
|
|
elif engine == "ollama-lib":
|
|
return summarize_with_ollama_lib(text, model)
|
|
elif engine == "ollama-api":
|
|
return summarize_with_ollama_api(text, model)
|
|
else:
|
|
print("Invalid engine specified. Use 'openai', 'ollama-lib', or 'ollama-api'.")
|
|
return None
|
|
|
|
if __name__ == "__main__":
|
|
sample_text = "Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to the natural intelligence displayed by animals and humans."
|
|
|
|
# Summarize using OpenAI
|
|
openai_summary = summarize_text(sample_text, model="gpt-3.5-turbo", engine="openai")
|
|
print("OpenAI Summary:", openai_summary)
|
|
|
|
# Summarize using Ollama Python library
|
|
ollama_lib_summary = summarize_text(sample_text, model="deepseek-r1:1.5B", engine="ollama-lib")
|
|
print("Ollama Library Summary:", ollama_lib_summary)
|
|
|
|
# Summarize using local Ollama API
|
|
ollama_api_summary = summarize_text(sample_text, model="deepseek-r1:1.5B", engine="ollama-api")
|
|
print("Ollama API Summary:", ollama_api_summary)
|