Files
LLM_Engineering_OLD/week3/community-contributions/dataset_generator.ipynb
2024-12-19 09:06:09 +06:00

267 lines
7.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"source": [
"!pip install -q requests torch bitsandbytes transformers sentencepiece accelerate gradio"
],
"metadata": {
"id": "kU2JrcPlhwd9"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Imports**"
],
"metadata": {
"id": "lAMIVT4iwNg0"
}
},
{
"cell_type": "code",
"source": [
"import os\n",
"import requests\n",
"from google.colab import drive\n",
"from huggingface_hub import login\n",
"from google.colab import userdata\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig\n",
"import torch\n",
"import gradio as gr\n",
"\n",
"hf_token = userdata.get('HF_TOKEN')\n",
"login(hf_token, add_to_git_credential=True)"
],
"metadata": {
"id": "-Apd7-p-hyLk"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Model**"
],
"metadata": {
"id": "xa0qYqZrwQ66"
}
},
{
"cell_type": "code",
"source": [
"model_name = \"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n",
"quant_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_quant_type=\"nf4\"\n",
")\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(\n",
" model_name,\n",
" device_map=\"auto\",\n",
" quantization_config=quant_config\n",
")"
],
"metadata": {
"id": "z5enGmuKjtJu"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Tokenizer**"
],
"metadata": {
"id": "y1hUSmWlwSbp"
}
},
{
"cell_type": "code",
"source": [
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"tokenizer.pad_token = tokenizer.eos_token"
],
"metadata": {
"id": "WjxNWW6bvdgj"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Functions**"
],
"metadata": {
"id": "1pg2U-B3wbIK"
}
},
{
"cell_type": "code",
"source": [
"def generate_dataset(topic, number_of_data, inst1, resp1, inst2, resp2, inst3, resp3):\n",
" # Convert user inputs into multi-shot examples\n",
" multi_shot_examples = [\n",
" {\"instruction\": inst1, \"response\": resp1},\n",
" {\"instruction\": inst2, \"response\": resp2},\n",
" {\"instruction\": inst3, \"response\": resp3}\n",
" ]\n",
"\n",
" # System prompt\n",
" system_prompt = f\"\"\"\n",
" You are a helpful assistant whose main purpose is to generate datasets.\n",
" Topic: {topic}\n",
" Return the dataset in JSON format. Use examples with simple, fun, and easy-to-understand instructions for kids.\n",
" Include the following examples: {multi_shot_examples}\n",
" Return {number_of_data} examples each time.\n",
" Do not repeat the provided examples.\n",
" \"\"\"\n",
"\n",
" # Example Messages\n",
" messages = [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": f\"Please generate my dataset for {topic}\"}\n",
" ]\n",
"\n",
" # Tokenize Input\n",
" inputs = tokenizer.apply_chat_template(messages, return_tensors=\"pt\").to(\"cuda\")\n",
" streamer = TextStreamer(tokenizer)\n",
"\n",
" # Generate Output\n",
" outputs = model.generate(inputs, max_new_tokens=2000, streamer=streamer)\n",
"\n",
" # Decode and Return\n",
" return tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
"\n",
"def gradio_interface(topic, number_of_data, inst1, resp1, inst2, resp2, inst3, resp3):\n",
" return generate_dataset(topic, number_of_data, inst1, resp1, inst2, resp2, inst3, resp3)"
],
"metadata": {
"id": "ZvljDKdji8iV"
},
"execution_count": 12,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Default Values**"
],
"metadata": {
"id": "_WDZ5dvRwmng"
}
},
{
"cell_type": "code",
"source": [
"default_topic = \"Talking to a (5-8) years old and teaching them manners.\"\n",
"default_number_of_data = 10\n",
"default_multi_shot_examples = [\n",
" {\n",
" \"instruction\": \"Why do I have to say please when I want something?\",\n",
" \"response\": \"Because its like magic! It shows youre nice, and people want to help you more.\"\n",
" },\n",
" {\n",
" \"instruction\": \"What should I say if someone gives me a toy?\",\n",
" \"response\": \"You say, 'Thank you!' because it makes them happy you liked it.\"\n",
" },\n",
" {\n",
" \"instruction\": \"why should I listen to my parents?\",\n",
" \"response\": \"Because parents want the best for you and they love you the most.\"\n",
" }\n",
"]"
],
"metadata": {
"id": "JAdfqYXnvEDE"
},
"execution_count": 13,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Init gradio**"
],
"metadata": {
"id": "JwZtD032wuK8"
}
},
{
"cell_type": "code",
"source": [
"gr_interface = gr.Interface(\n",
" fn=gradio_interface,\n",
" inputs=[\n",
" gr.Textbox(label=\"Topic\", value=default_topic, lines=2),\n",
" gr.Number(label=\"Number of Examples\", value=default_number_of_data, precision=0),\n",
" gr.Textbox(label=\"Instruction 1\", value=default_multi_shot_examples[0][\"instruction\"]),\n",
" gr.Textbox(label=\"Response 1\", value=default_multi_shot_examples[0][\"response\"]),\n",
" gr.Textbox(label=\"Instruction 2\", value=default_multi_shot_examples[1][\"instruction\"]),\n",
" gr.Textbox(label=\"Response 2\", value=default_multi_shot_examples[1][\"response\"]),\n",
" gr.Textbox(label=\"Instruction 3\", value=default_multi_shot_examples[2][\"instruction\"]),\n",
" gr.Textbox(label=\"Response 3\", value=default_multi_shot_examples[2][\"response\"]),\n",
" ],\n",
" outputs=gr.Textbox(label=\"Generated Dataset\")\n",
")"
],
"metadata": {
"id": "xy2RP5T-vxXg"
},
"execution_count": 14,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Run the app**"
],
"metadata": {
"id": "HZx-mm9Uw3Ph"
}
},
{
"cell_type": "code",
"source": [
"gr_interface.launch()"
],
"metadata": {
"id": "bfGs5ip8mndg"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "Cveqx392x7Mm"
},
"execution_count": null,
"outputs": []
}
]
}