Merge pull request #278 from palbha/palbha_contributions
Create day5_openai_whisper_llamainstruct
This commit is contained in:
@@ -0,0 +1,78 @@
|
||||
import gradio as gr
|
||||
import torch
|
||||
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer, AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
||||
from huggingface_hub import login
|
||||
import os
|
||||
|
||||
# Use the secret stored in the Hugging Face space
|
||||
token = os.getenv("HF_TOKEN")
|
||||
login(token=token)
|
||||
|
||||
# Whisper Model Optimization
|
||||
model = "openai/whisper-tiny"
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model)
|
||||
|
||||
|
||||
transcriber = pipeline(
|
||||
"automatic-speech-recognition",
|
||||
model=model,
|
||||
tokenizer=processor.tokenizer,
|
||||
feature_extractor=processor.feature_extractor,
|
||||
device=0 if torch.cuda.is_available() else "cpu",
|
||||
)
|
||||
|
||||
|
||||
|
||||
# Function to Transcribe & Generate Minutes
|
||||
def process_audio(audio_file):
|
||||
if audio_file is None:
|
||||
return "Error: No audio provided!"
|
||||
|
||||
# Transcribe audio
|
||||
transcript = transcriber(audio_file)["text"]
|
||||
del transcriber
|
||||
del processor
|
||||
# LLaMA Model Optimization
|
||||
LLAMA = "meta-llama/Llama-3.2-3B-Instruct"
|
||||
llama_quant_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(LLAMA)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
LLAMA,
|
||||
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
||||
device_map="auto"
|
||||
)
|
||||
# Generate meeting minutes
|
||||
system_message = "You are an assistant that produces minutes of meetings from transcripts, with summary, key discussion points, takeaways and action items with owners, in markdown."
|
||||
user_prompt = f"Below is an extract transcript of a Denver council meeting. Please write minutes in markdown, including a summary with attendees, location and date; discussion points; takeaways; and action items with owners.\n{transcript}"
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": system_message},
|
||||
{"role": "user", "content": user_prompt}
|
||||
]
|
||||
|
||||
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(DEVICE)
|
||||
streamer = TextStreamer(tokenizer)
|
||||
outputs = model.generate(inputs, max_new_tokens=2000, streamer=streamer)
|
||||
|
||||
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
|
||||
# Gradio Interface
|
||||
interface = gr.Interface(
|
||||
fn=process_audio,
|
||||
inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"),
|
||||
outputs="text",
|
||||
title="Meeting Minutes Generator",
|
||||
description="Upload or record an audio file to get structured meeting minutes in Markdown.",
|
||||
)
|
||||
|
||||
# Launch App
|
||||
interface.launch()
|
||||
Reference in New Issue
Block a user