Merge pull request #732 from chimwemwekachaje/main
Added week 2 exercise in community-contributions
This commit is contained in:
218
week2/community-contributions/kachaje/week2-exercise.ipynb
Normal file
218
week2/community-contributions/kachaje/week2-exercise.ipynb
Normal file
@@ -0,0 +1,218 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4df365ad",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Week 2 Exercise\n",
|
||||
"\n",
|
||||
"## Objective:\n",
|
||||
"\n",
|
||||
"Demonstrate what has been learnt in week 2 by upgrading week 1 project to have a UI using Gradio UI. Expected to include streaming and use of system prompts to add expertise and ability to switch between models. \n",
|
||||
"Bonus points if use of a tool can also be demonstrated.\n",
|
||||
"Audio input with autio output also a bonus."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9ac344b4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import gradio as gr\n",
|
||||
"import anthropic\n",
|
||||
"import google.generativeai as genai\n",
|
||||
"from openai import OpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cf272f10",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"load_dotenv(override=True)\n",
|
||||
"\n",
|
||||
"# Set up the Anthropic API key\n",
|
||||
"anthropic_api_key = os.getenv(\"ANTHROPIC_API_KEY\")\n",
|
||||
"if anthropic_api_key:\n",
|
||||
" print(f\"Anthropic API key set and begins with: {anthropic_api_key[:6]}...\")\n",
|
||||
"\n",
|
||||
"# Set up the Google API key\n",
|
||||
"google_api_key = os.getenv(\"GOOGLE_API_KEY\")\n",
|
||||
"if google_api_key:\n",
|
||||
" print(f\"Google API key set and begins with: {google_api_key[:6]}...\")\n",
|
||||
"\n",
|
||||
"openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
||||
"\n",
|
||||
"anthropic_url = \"https://api.anthropic.com/v1/\"\n",
|
||||
"gemini_url = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
|
||||
"\n",
|
||||
"anthropic = OpenAI(api_key=anthropic_api_key, base_url=anthropic_url)\n",
|
||||
"gemini = OpenAI(api_key=google_api_key, base_url=gemini_url)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "77b67726",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# models\n",
|
||||
"\n",
|
||||
"MODEL_LLAMA=\"llama3.2\"\n",
|
||||
"MODEL_ANTHROPIC=\"claude-sonnet-4-5-20250929\"\n",
|
||||
"MODEL_GOOGLE=\"gemini-2.5-flash\"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9fe4a2f3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_message = \"\"\"\n",
|
||||
"You are an expert software engineer.\n",
|
||||
"You are given a technical question and you need to explain what the code does and why.\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9afdce10",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"MODEL=MODEL_LLAMA"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "62d0135e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def stream_llama(message):\n",
|
||||
" history = []\n",
|
||||
" history = [{\"role\":h[\"role\"], \"content\":h[\"content\"]} for h in history]\n",
|
||||
" \n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
"\n",
|
||||
" stream = openai.chat.completions.create(model=MODEL_LLAMA, messages=messages, stream=True)\n",
|
||||
"\n",
|
||||
" response = \"\"\n",
|
||||
" for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or ''\n",
|
||||
" yield response\n",
|
||||
"\n",
|
||||
"def stream_claude(message):\n",
|
||||
" history = []\n",
|
||||
" history = [{\"role\":h[\"role\"], \"content\":h[\"content\"]} for h in history]\n",
|
||||
" \n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
"\n",
|
||||
" stream = anthropic.chat.completions.create(model=MODEL_ANTHROPIC, messages=messages, stream=True)\n",
|
||||
"\n",
|
||||
" response = \"\"\n",
|
||||
" for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or ''\n",
|
||||
" yield response\n",
|
||||
" \n",
|
||||
"def stream_gemini(message):\n",
|
||||
" history = []\n",
|
||||
" history = [{\"role\":h[\"role\"], \"content\":h[\"content\"]} for h in history]\n",
|
||||
" \n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
"\n",
|
||||
" stream = gemini.chat.completions.create(model=MODEL_GOOGLE, messages=messages, stream=True)\n",
|
||||
"\n",
|
||||
" response = \"\"\n",
|
||||
" for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or ''\n",
|
||||
" yield response\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3fec5ce3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def stream_model(prompt, model):\n",
|
||||
" print(f\"Prompt: {prompt}, Model: {model}\")\n",
|
||||
"\n",
|
||||
" if model==\"Llama\":\n",
|
||||
" result = stream_llama(prompt)\n",
|
||||
" elif model==\"Claude\":\n",
|
||||
" result = stream_claude(prompt)\n",
|
||||
" elif model==\"Gemini\":\n",
|
||||
" result = stream_gemini(prompt)\n",
|
||||
" else:\n",
|
||||
" raise ValueError(\"Unknown model\")\n",
|
||||
" yield from result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8f3db610",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"question_input = gr.Textbox(label=\"Your message:\", info=\"Enter a question\", lines=7)\n",
|
||||
"model_selector = gr.Dropdown(choices=[\"Llama\", \"Claude\", \"Gemini\"], value=\"Llama\", label=\"Model\") \n",
|
||||
"message_output = gr.Markdown(label=\"Response:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1428a4a8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"view = gr.Interface(\n",
|
||||
" fn=stream_model, \n",
|
||||
" inputs=[question_input, model_selector], \n",
|
||||
" outputs=message_output,\n",
|
||||
" flagging_mode=\"never\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"view.launch(inbrowser=True)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.10"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user