Added ensemble agent updated with xg_boost agent to community-contributions

This commit is contained in:
Zoya Hammad
2025-04-25 09:42:18 +05:00
parent b8b2f766e5
commit 1876130d65
3 changed files with 2280 additions and 0 deletions

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,52 @@
import pandas as pd
from sklearn.linear_model import LinearRegression
import joblib
from agents.agent import Agent
from agents.specialist_agent import SpecialistAgent
from agents.frontier_agent import FrontierAgent
from agents.random_forest_agent import RandomForestAgent
from agents.xg_boost_agent import XGBoostAgent
class EnsembleAgent(Agent):
name = "Ensemble Agent"
color = Agent.YELLOW
def __init__(self, collection):
"""
Create an instance of Ensemble, by creating each of the models
And loading the weights of the Ensemble
"""
self.log("Initializing Ensemble Agent")
self.specialist = SpecialistAgent()
self.frontier = FrontierAgent(collection)
self.random_forest = RandomForestAgent()
self.xg_boost = XGBoostAgent()
self.model = joblib.load('ensemble_model.pkl')
self.log("Ensemble Agent is ready")
def price(self, description: str) -> float:
"""
Run this ensemble model
Ask each of the models to price the product
Then use the Linear Regression model to return the weighted price
:param description: the description of a product
:return: an estimate of its price
"""
self.log("Running Ensemble Agent - collaborating with specialist, frontier, xg boost and random forest agents")
specialist = self.specialist.price(description)
frontier = self.frontier.price(description)
random_forest = self.random_forest.price(description)
xg_boost = self.xg_boost.price(description)
X = pd.DataFrame({
'Specialist': [specialist],
'Frontier': [frontier],
'RandomForest': [random_forest],
'XGBoost' : [xg_boost],
'Min': [min(specialist, frontier, random_forest, xg_boost)],
'Max': [max(specialist, frontier, random_forest, xg_boost)],
})
y = max(0, self.model.predict(X)[0])
self.log(f"Ensemble Agent complete - returning ${y:.2f}")
return y

View File

@@ -0,0 +1,46 @@
# imports
import os
import re
from typing import List
from sentence_transformers import SentenceTransformer
import joblib
from agents.agent import Agent
import xgboost as xgb
class XGBoostAgent(Agent):
name = "XG Boost Agent"
color = Agent.BRIGHT_MAGENTA
def __init__(self):
"""
Initialize this object by loading in the saved model weights
and the SentenceTransformer vector encoding model
"""
self.log("XG Boost Agent is initializing")
self.vectorizer = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
self.model = joblib.load('xg_boost_model.pkl')
self.log("XG Boost Agent is ready")
def price(self, description: str) -> float:
"""
Use an XG Boost model to estimate the price of the described item
:param description: the product to be estimated
:return: the price as a float
"""
self.log("XG Boost Agent is starting a prediction")
vector = self.vectorizer.encode([description])
vector = vector.reshape(1, -1)
# Convert the vector to DMatrix
dmatrix = xgb.DMatrix(vector)
# Predict the price using the model
result = max(0, self.model.predict(dmatrix)[0])
self.log(f"XG Boost Agent completed - predicting ${result:.2f}")
return result