Merge pull request #436 from lisekarimi/feature/week8
Add week8 contributions
This commit is contained in:
File diff suppressed because it is too large
Load Diff
387
week8/community_contributions/lisekarimi/10_part2_modal.ipynb
Normal file
387
week8/community_contributions/lisekarimi/10_part2_modal.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -0,0 +1,33 @@
|
||||
import logging
|
||||
|
||||
class Agent:
|
||||
"""
|
||||
An abstract superclass for Agents
|
||||
Used to log messages in a way that can identify each Agent
|
||||
"""
|
||||
|
||||
# Foreground colors
|
||||
RED = '\033[31m'
|
||||
GREEN = '\033[32m'
|
||||
YELLOW = '\033[33m'
|
||||
BLUE = '\033[34m'
|
||||
MAGENTA = '\033[35m'
|
||||
CYAN = '\033[36m'
|
||||
WHITE = '\033[37m'
|
||||
|
||||
# Background color
|
||||
BG_BLACK = '\033[40m'
|
||||
|
||||
# Reset code to return to default color
|
||||
RESET = '\033[0m'
|
||||
|
||||
name: str = ""
|
||||
color: str = '\033[37m'
|
||||
|
||||
def log(self, message):
|
||||
"""
|
||||
Log this as an info message, identifying the agent
|
||||
"""
|
||||
color_code = self.BG_BLACK + self.color
|
||||
message = f"[{self.name}] {message}"
|
||||
logging.info(color_code + message + self.RESET)
|
||||
@@ -0,0 +1,29 @@
|
||||
import modal
|
||||
from agents.base_agent import Agent
|
||||
|
||||
|
||||
class FTPriceAgent(Agent):
|
||||
"""
|
||||
An Agent that runs the fine-tuned LLM that's running remotely on Modal
|
||||
"""
|
||||
|
||||
name = "FTPrice Agent"
|
||||
color = Agent.RED
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Set up this Agent by creating an instance of the modal class
|
||||
"""
|
||||
self.log("FTPrice Agent is initializing - connecting to modal")
|
||||
Pricer = modal.Cls.from_name("llm-ft-pricer", "Pricer") # 1st API call: to fetch Pricer (remote class)
|
||||
self.pricer = Pricer()
|
||||
self.log("FTPrice Agent is ready")
|
||||
|
||||
def price(self, description: str) -> float:
|
||||
"""
|
||||
Make a remote call to return the estimate of the price of this item
|
||||
"""
|
||||
self.log("FTPrice Agent is calling remote fine-tuned model")
|
||||
result = self.pricer.price.remote(description) # 2nd API call: to run the price method in the remote Pricer class
|
||||
self.log(f"FTPrice Agent completed - predicting ${result:.2f}")
|
||||
return result
|
||||
120
week8/community_contributions/lisekarimi/helpers/items.py
Normal file
120
week8/community_contributions/lisekarimi/helpers/items.py
Normal file
@@ -0,0 +1,120 @@
|
||||
from typing import Optional # A variable might be a certain type or None
|
||||
from transformers import AutoTokenizer
|
||||
import re
|
||||
|
||||
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
||||
|
||||
MIN_TOKENS = 150 # Minimum tokens required to accept an item
|
||||
MAX_TOKENS = 160 # We limit to 160 tokens so that after adding prompt text, the total stays around 180 tokens.
|
||||
|
||||
MIN_CHARS = 300 # Reject items with less than 300 characters
|
||||
CEILING_CHARS = MAX_TOKENS * 7 # Truncate long text to about 1120 characters (approx 160 tokens)
|
||||
|
||||
class Item:
|
||||
"""
|
||||
An Item is a cleaned, curated datapoint of a Product with a Price
|
||||
"""
|
||||
|
||||
# Load tokenizer for the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
||||
|
||||
# Define PRICE_LABEL and question for the training prompt
|
||||
PRICE_LABEL = "Price is $"
|
||||
QUESTION = "How much does this cost to the nearest dollar?"
|
||||
|
||||
# A list of useless phrases to remove to reduce noise for price prediction
|
||||
REMOVALS = ['"Batteries Included?": "No"', '"Batteries Included?": "Yes"', '"Batteries Required?": "No"', '"Batteries Required?": "Yes"', "By Manufacturer", "Item", "Date First", "Package", ":", "Number of", "Best Sellers", "Number", "Product "]
|
||||
|
||||
# Attributes for each item
|
||||
title: str
|
||||
price: float
|
||||
category: str
|
||||
token_count: int = 0 # How many tokens in the final prompt
|
||||
|
||||
# Optional fields
|
||||
details: Optional[str] # The value can be a string or can be None
|
||||
prompt: Optional[str] = None
|
||||
include = False # Whether to keep the item or not
|
||||
|
||||
def __init__(self, data, price):
|
||||
self.title = data['title']
|
||||
self.price = price
|
||||
self.parse(data)
|
||||
|
||||
def scrub_details(self):
|
||||
"""
|
||||
Removes useless phrases from details, which often has repeated specs or boilerplate text.
|
||||
"""
|
||||
details = self.details
|
||||
for remove in self.REMOVALS:
|
||||
details = details.replace(remove, "")
|
||||
return details
|
||||
|
||||
def scrub(self, stuff):
|
||||
"""
|
||||
Clean up the provided text by removing unnecessary characters and whitespace
|
||||
Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers
|
||||
"""
|
||||
stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip()
|
||||
stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",")
|
||||
words = stuff.split(' ')
|
||||
select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)]
|
||||
return " ".join(select)
|
||||
|
||||
def parse(self, data):
|
||||
"""
|
||||
Prepares the text, checks length, tokenizes it, and sets include = True if it’s valid.
|
||||
"""
|
||||
# Builds a full contents string by combining description, features, and cleaned details.
|
||||
contents = '\n'.join(data['description'])
|
||||
if contents:
|
||||
contents += '\n'
|
||||
features = '\n'.join(data['features'])
|
||||
if features:
|
||||
contents += features + '\n'
|
||||
self.details = data['details']
|
||||
if self.details:
|
||||
contents += self.scrub_details() + '\n'
|
||||
|
||||
# If content is long enough, trim it to max char limit before processing.
|
||||
if len(contents) > MIN_CHARS:
|
||||
contents = contents[:CEILING_CHARS]
|
||||
|
||||
# Clean and tokenize text, then check token count.
|
||||
text = f"{self.scrub(self.title)}\n{self.scrub(contents)}"
|
||||
tokens = self.tokenizer.encode(text, add_special_tokens=False)
|
||||
|
||||
if len(tokens) > MIN_TOKENS:
|
||||
# Truncate tokens, decode them back and create the training prompt
|
||||
tokens = tokens[:MAX_TOKENS]
|
||||
text = self.tokenizer.decode(tokens)
|
||||
self.make_prompt(text)
|
||||
|
||||
# Mark the item as valid and ready to be used in training
|
||||
self.include = True # Only items with MIN_TOKENS <= tokens <= MAX_TOKENS are kept
|
||||
|
||||
|
||||
def make_prompt(self, text):
|
||||
"""
|
||||
Builds the training prompt using the question, text, and price. Then counts the tokens.
|
||||
"""
|
||||
self.prompt = f"{self.QUESTION}\n\n{text}\n\n"
|
||||
self.prompt += f"{self.PRICE_LABEL }{str(round(self.price))}.00"
|
||||
self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False))
|
||||
|
||||
def test_prompt(self):
|
||||
"""
|
||||
Returns the prompt without the actual price, useful for testing/inference.
|
||||
"""
|
||||
return self.prompt.split(self.PRICE_LABEL )[0] + self.PRICE_LABEL
|
||||
|
||||
def __repr__(self):
|
||||
"""
|
||||
Defines how the Item object looks when printed — it shows the title and price.
|
||||
"""
|
||||
return f"<{self.title} = ${self.price}>"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
106
week8/community_contributions/lisekarimi/helpers/loaders.py
Normal file
106
week8/community_contributions/lisekarimi/helpers/loaders.py
Normal file
@@ -0,0 +1,106 @@
|
||||
from datetime import datetime # Measure how long loading takes
|
||||
from tqdm import tqdm # Shows a progress bar while processing data
|
||||
from datasets import load_dataset # Load a dataset from Hugging Face Hub
|
||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor # For parallel processing (speed)
|
||||
from items import Item
|
||||
|
||||
CHUNK_SIZE = 1000 # Process the dataset in chunks of 1000 datapoints at a time (for efficiency)
|
||||
MIN_PRICE = 0.5
|
||||
MAX_PRICE = 999.49
|
||||
WORKER = 4 # Set the number of workers here
|
||||
|
||||
class ItemLoader:
|
||||
|
||||
def __init__(self, name):
|
||||
"""
|
||||
Initialize the loader with a dataset name.
|
||||
"""
|
||||
self.name = name # Store the category name
|
||||
self.dataset = None #Placeholder for the dataset (we load it later in load())
|
||||
|
||||
def process_chunk(self, chunk):
|
||||
"""
|
||||
Convert a chunk of datapoints into valid Item objects.
|
||||
"""
|
||||
batch = [] # Initialize the list to hold valid items
|
||||
|
||||
# Loop through each datapoint in the chunk
|
||||
for datapoint in chunk:
|
||||
try:
|
||||
# Extract price from datapoint
|
||||
price_str = datapoint['price']
|
||||
if price_str:
|
||||
price = float(price_str)
|
||||
|
||||
# Check if price is within valid range
|
||||
if MIN_PRICE <= price <= MAX_PRICE:
|
||||
item = Item(datapoint, price)
|
||||
|
||||
# Keep only valid items
|
||||
if item.include:
|
||||
batch.append(item)
|
||||
except ValueError:
|
||||
continue # Skip datapoints with invalid price format
|
||||
return batch # Return the list of valid items
|
||||
|
||||
|
||||
def load_in_parallel(self, workers):
|
||||
"""
|
||||
Split the dataset into chunks and process them in parallel.
|
||||
"""
|
||||
results = []
|
||||
size = len(self.dataset)
|
||||
chunk_count = (size // CHUNK_SIZE) + 1
|
||||
|
||||
# Build chunks directly here (no separate function)
|
||||
chunks = [
|
||||
self.dataset.select(range(i, min(i + CHUNK_SIZE, size)))
|
||||
for i in range(0, size, CHUNK_SIZE)
|
||||
]
|
||||
|
||||
# Process chunks in parallel using multiple CPU cores
|
||||
with ProcessPoolExecutor(max_workers=workers) as pool:
|
||||
for batch in tqdm(pool.map(self.process_chunk, chunks), total=chunk_count):
|
||||
results.extend(batch)
|
||||
|
||||
# Add the category name to each result
|
||||
for result in results:
|
||||
result.category = self.name
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def load(self, workers=WORKER):
|
||||
"""
|
||||
Load and process the dataset, returning valid items.
|
||||
"""
|
||||
# Record start time
|
||||
start = datetime.now()
|
||||
|
||||
# Print loading message
|
||||
print(f"Loading dataset {self.name}", flush=True)
|
||||
|
||||
# Load dataset from Hugging Face (based on category name)
|
||||
self.dataset = load_dataset(
|
||||
"McAuley-Lab/Amazon-Reviews-2023",
|
||||
f"raw_meta_{self.name}",
|
||||
split="full",
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
# Process the dataset in parallel and collect valid items
|
||||
results = self.load_in_parallel(workers)
|
||||
|
||||
# Record end time and print summary
|
||||
finish = datetime.now()
|
||||
print(
|
||||
f"Completed {self.name} with {len(results):,} datapoints in {(finish-start).total_seconds()/60:.1f} mins",
|
||||
flush=True
|
||||
)
|
||||
|
||||
# Return the list of valid items
|
||||
return results
|
||||
|
||||
|
||||
|
||||
|
||||
84
week8/community_contributions/lisekarimi/helpers/testing.py
Normal file
84
week8/community_contributions/lisekarimi/helpers/testing.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
GREEN = "\033[92m"
|
||||
YELLOW = "\033[93m"
|
||||
RED = "\033[91m"
|
||||
RESET = "\033[0m"
|
||||
COLOR_MAP = {"red":RED, "orange": YELLOW, "green": GREEN}
|
||||
|
||||
class Tester:
|
||||
|
||||
def __init__(self, predictor, data, title=None, size=250):
|
||||
self.predictor = predictor
|
||||
self.data = data
|
||||
self.title = title or predictor.__name__.replace("_", " ").title()
|
||||
self.size = size
|
||||
self.guesses = []
|
||||
self.truths = []
|
||||
self.errors = []
|
||||
self.sles = []
|
||||
self.colors = []
|
||||
|
||||
def color_for(self, error, truth):
|
||||
if error<40 or error/truth < 0.2:
|
||||
return "green"
|
||||
elif error<80 or error/truth < 0.4:
|
||||
return "orange"
|
||||
else:
|
||||
return "red"
|
||||
|
||||
def run_datapoint(self, i):
|
||||
datapoint = self.data[i]
|
||||
guess = self.predictor(datapoint)
|
||||
truth = datapoint["price"]
|
||||
error = abs(guess - truth)
|
||||
log_error = math.log(truth+1) - math.log(guess+1)
|
||||
sle = log_error ** 2
|
||||
color = self.color_for(error, truth)
|
||||
title = datapoint["text"][:40] + "..." if len(datapoint["text"]) > 40 else datapoint["text"]
|
||||
self.guesses.append(guess)
|
||||
self.truths.append(truth)
|
||||
self.errors.append(error)
|
||||
self.sles.append(sle)
|
||||
self.colors.append(color)
|
||||
# print(f"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} Truth: ${truth:,.2f} Error: ${error:,.2f} SLE: {sle:,.2f} Item: {title}{RESET}")
|
||||
|
||||
def chart(self, title):
|
||||
max_error = max(self.errors)
|
||||
plt.figure(figsize=(15, 6))
|
||||
max_val = max(max(self.truths), max(self.guesses))
|
||||
plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=2, alpha=0.6)
|
||||
plt.scatter(self.truths, self.guesses, s=3, c=self.colors)
|
||||
plt.xlabel('Ground Truth')
|
||||
plt.ylabel('Model Estimate')
|
||||
plt.xlim(0, max_val)
|
||||
plt.ylim(0, max_val)
|
||||
plt.title(title)
|
||||
|
||||
# Add color legend
|
||||
from matplotlib.lines import Line2D
|
||||
legend_elements = [
|
||||
Line2D([0], [0], marker='o', color='w', label='Accurate (green)', markerfacecolor='green', markersize=8),
|
||||
Line2D([0], [0], marker='o', color='w', label='Medium error (orange)', markerfacecolor='orange', markersize=8),
|
||||
Line2D([0], [0], marker='o', color='w', label='High error (red)', markerfacecolor='red', markersize=8)
|
||||
]
|
||||
plt.legend(handles=legend_elements, loc='upper left')
|
||||
plt.show()
|
||||
|
||||
def report(self):
|
||||
average_error = sum(self.errors) / self.size
|
||||
rmsle = math.sqrt(sum(self.sles) / self.size)
|
||||
hits = sum(1 for color in self.colors if color=="green")
|
||||
title = f"{self.title} Error=${average_error:,.2f} RMSLE={rmsle:,.2f} Hits={hits/self.size*100:.1f}%"
|
||||
self.chart(title)
|
||||
|
||||
def run(self):
|
||||
self.error = 0
|
||||
for i in range(self.size):
|
||||
self.run_datapoint(i)
|
||||
self.report()
|
||||
|
||||
@classmethod
|
||||
def test(cls, function, data):
|
||||
cls(function, data).run()
|
||||
@@ -0,0 +1,140 @@
|
||||
import modal
|
||||
from modal import App, Volume, Image
|
||||
|
||||
import logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
# Constants
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
|
||||
GPU = "T4" # Use a T4 GPU for inference
|
||||
CACHE_PATH = "/cache" # Mount point for the Modal volume
|
||||
|
||||
# Hugging Face model references
|
||||
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
||||
FINETUNED_MODEL = "ed-donner/pricer-2024-09-13_13.04.39"
|
||||
REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36" # Commit of the fine-tuned model
|
||||
|
||||
# Local cache paths (inside the volume)
|
||||
BASE_MODEL_DIR = f"{CACHE_PATH}/llama_base_model"
|
||||
FINETUNED_MODEL_DIR = f"{CACHE_PATH}/llama_finetuned_model"
|
||||
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
# Structure
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
|
||||
# Container (App: llm-ft-pricer)
|
||||
# ├── /app ← Code + installed Python packages (from image)
|
||||
# ├── /cache ← Mounted Modal volume (`hf-hub-cache`)
|
||||
# │ └── meta-llama/Meta-Llama-3.1-8B/... ← HuggingFace model files downloaded via snapshot_download
|
||||
|
||||
|
||||
|
||||
QUESTION = "How much does this cost to the nearest dollar?"
|
||||
PREFIX = "Price is $" # Used to parse generated output
|
||||
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
# Modal App, Image, Volume, Secrets
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
|
||||
app = modal.App("llm-ft-pricer") # Define the Modal app
|
||||
|
||||
image = (
|
||||
Image.debian_slim()
|
||||
.pip_install("huggingface", "torch", "transformers", "bitsandbytes", "accelerate", "peft") # All needed libraries
|
||||
.env({"HF_HUB_CACHE": CACHE_PATH}) # Hugging Face will store model files in /cache
|
||||
)
|
||||
|
||||
cache_vol = modal.Volume.from_name("hf-hub-cache", create_if_missing=True) # Persisted volume for caching models
|
||||
secrets = [modal.Secret.from_name("HF_TOKEN")] # Hugging Face auth token
|
||||
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
# Modal Class: Pricer
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
|
||||
# All methods in this class run inside the container with the image, volume, secrets, and GPU you configured.
|
||||
@app.cls(
|
||||
image=image,
|
||||
secrets=secrets,
|
||||
volumes={CACHE_PATH: cache_vol}, # Mount volume into /cache
|
||||
gpu=GPU,
|
||||
timeout=1800, # 30-minute max runtime
|
||||
min_containers=0, # = 1 : Keeping one container warm uses credits continuously if you forget to stop it.
|
||||
scaledown_window=300, # Shuts down the container
|
||||
)
|
||||
class Pricer:
|
||||
@modal.enter()
|
||||
def setup(self):
|
||||
import os, torch
|
||||
import logging
|
||||
from huggingface_hub import snapshot_download
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
from peft import PeftModel
|
||||
|
||||
# Create cache path if it doesn't exist
|
||||
os.makedirs(CACHE_PATH, exist_ok=True)
|
||||
|
||||
# Download base and fine-tuned models into volume
|
||||
logging.info("Downloading base model...")
|
||||
snapshot_download(BASE_MODEL, local_dir=BASE_MODEL_DIR)
|
||||
|
||||
logging.info("Downloading fine-tuned model...")
|
||||
snapshot_download(FINETUNED_MODEL, revision=REVISION, local_dir=FINETUNED_MODEL_DIR)
|
||||
|
||||
# Quantization config (4-bit)
|
||||
quant_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
|
||||
# Load tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_DIR)
|
||||
self.tokenizer.pad_token = self.tokenizer.eos_token
|
||||
self.tokenizer.padding_side = "right"
|
||||
|
||||
# Load base model (quantized)
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
BASE_MODEL_DIR,
|
||||
quantization_config=quant_config,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
# Apply fine-tuned weights
|
||||
self.fine_tuned_model = PeftModel.from_pretrained(
|
||||
base_model,
|
||||
FINETUNED_MODEL_DIR,
|
||||
revision=REVISION
|
||||
)
|
||||
self.fine_tuned_model.generation_config.pad_token_id = self.tokenizer.pad_token_id
|
||||
|
||||
@modal.method()
|
||||
def price(self, description: str) -> float:
|
||||
import re, torch
|
||||
from transformers import set_seed
|
||||
|
||||
set_seed(42) # Deterministic output
|
||||
|
||||
# Construct prompt
|
||||
prompt = f"{QUESTION}\n\n{description}\n\n{PREFIX}"
|
||||
inputs = self.tokenizer.encode(prompt, return_tensors="pt").to("cuda")
|
||||
attention_mask = torch.ones(inputs.shape, device="cuda")
|
||||
|
||||
# Generate model output (max 5 tokens)
|
||||
outputs = self.fine_tuned_model.generate(
|
||||
inputs,
|
||||
attention_mask=attention_mask,
|
||||
max_new_tokens=5,
|
||||
num_return_sequences=1
|
||||
)
|
||||
result = self.tokenizer.decode(outputs[0])
|
||||
|
||||
# Extract number after "Price is $"
|
||||
contents = result.split("Price is $")[1]
|
||||
contents = contents.replace(',', '')
|
||||
match = re.search(r"[-+]?\d*\.\d+|\d+", contents)
|
||||
return float(match.group()) if match else 0 # Return parsed price or 0 if not found
|
||||
|
||||
|
||||
@@ -0,0 +1,12 @@
|
||||
import sys, modal
|
||||
|
||||
app = modal.App("example-hello-world")
|
||||
|
||||
@app.function()
|
||||
def f(i: int) -> int:
|
||||
if i % 2 == 0:
|
||||
print("hello", i)
|
||||
else:
|
||||
print("world", i, file=sys.stderr)
|
||||
|
||||
return i * i
|
||||
Reference in New Issue
Block a user