Add Copilot and weather agent notebooks

Introduces Copilot.ipynb, an adaptive AI coding assistant with OpenAI and Gemini integration via Gradio, and weather_agent.ipynb, a weather chat agent supporting current, historical, and forecast queries using WeatherAPI and OpenAI tool-calling. Both notebooks provide interactive UIs for user queries.
This commit is contained in:
KiranAyyagari
2025-08-18 20:16:14 +05:30
parent a5e49af4cd
commit 72eb3562b7
2 changed files with 582 additions and 0 deletions

View File

@@ -0,0 +1,212 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "1877ad68",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"from openai import OpenAI\n",
"import gradio as gr\n",
"from dotenv import load_dotenv \n",
"import google.generativeai as genai\n",
"from IPython.display import Markdown, display, update_display\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "008056a2",
"metadata": {},
"outputs": [],
"source": [
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f'OpenAi api key exists and its starts with {openai_api_key[:3]}')\n",
"else:\n",
" print(\"OpenAi api key doesn't exist\")\n",
"\n",
"if google_api_key:\n",
" print('Google api key exists')\n",
"else:\n",
" print(\"Google api key doesn't exist\")\n",
"\n",
"OPENAI_MODEL = \"gpt-4o-mini\"\n",
"GOOGLE_MODEL = \"gemini-1.5-flash\"\n",
"\n",
"openai = OpenAI()\n",
"\n",
"genai.configure()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5013ed7b",
"metadata": {},
"outputs": [],
"source": [
"system_msg = \"\"\"\n",
"You are CodeCopilot, an adaptive AI coding assistant that helps users solve problems in any programming language.\n",
"Always provide correct, runnable, and well-formatted code with clear explanations.\n",
"Adjust your style based on the users expertise: for beginners, break concepts down step by step with simple examples and commented code;\n",
"for advanced users, deliver concise, production-ready, optimized solutions with best practices and trade-off insights.\n",
"Ask clarifying questions when requirements are ambiguous, highlight pitfalls and edge cases,\n",
"and act as a collaborative pair programmer or mentor whose goal is to help users learn, build, and ship high-quality code efficiently.\n",
"\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35c480a1",
"metadata": {},
"outputs": [],
"source": [
"def create_prompt(prompt, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_msg}]\n",
"\n",
" # history is a list of (user_msg, assistant_msg) tuples\n",
" for user_msg, assistant_msg in history:\n",
" if user_msg:\n",
" messages.append({\"role\": \"user\", \"content\": user_msg})\n",
" if assistant_msg:\n",
" messages.append({\"role\": \"assistant\", \"content\": assistant_msg})\n",
"\n",
" # new user prompt\n",
" messages.append({\"role\": \"user\", \"content\": prompt})\n",
" return messages"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5dfbecd0",
"metadata": {},
"outputs": [],
"source": [
"def openai_agent(prompt, history):\n",
" openai.api_key = openai_api_key\n",
" messages = create_prompt(prompt, history)\n",
" response = openai.chat.completions.create(\n",
" model=OPENAI_MODEL,\n",
" messages=messages,\n",
" stream=True\n",
" )\n",
" sent_any = False\n",
" for chunk in response:\n",
" delta = chunk.choices[0].delta\n",
" if delta and delta.content:\n",
" sent_any = True\n",
" yield delta.content\n",
" if not sent_any:\n",
" yield \"(no response)\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "535f7e3d",
"metadata": {},
"outputs": [],
"source": [
"def gemini_agent(prompt, history):\n",
" genai.configure(api_key=google_api_key)\n",
"\n",
" # reuse OpenAI-style messages\n",
" messages = create_prompt(prompt, history)\n",
"\n",
" gemini_history = []\n",
" for m in messages:\n",
" # Gemini does NOT support system role\n",
" if m[\"role\"] == \"system\":\n",
" continue\n",
" gemini_history.append({\n",
" \"role\": m[\"role\"],\n",
" \"parts\": [m[\"content\"]]\n",
" })\n",
" prompt_with_system = f\"{system_msg}\\n\\n{prompt}\"\n",
" model = genai.GenerativeModel(GOOGLE_MODEL)\n",
" chat = model.start_chat(history=gemini_history)\n",
"\n",
" response = chat.send_message(prompt_with_system, stream=True)\n",
" for chunk in response:\n",
" if chunk and getattr(chunk, \"text\", None):\n",
" yield chunk.text\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "21f61ff0",
"metadata": {},
"outputs": [],
"source": [
"def chat_agent(prompt, history, modelType):\n",
" if modelType == \"OpenAI\":\n",
" for token in openai_agent(prompt, history):\n",
" yield token\n",
" else:\n",
" for token in gemini_agent(prompt, history):\n",
" yield token\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56686c1d",
"metadata": {},
"outputs": [],
"source": [
"def chat_fn(prompt, history, model):\n",
" assistant_response = \"\"\n",
" for token in chat_agent(prompt, history, model):\n",
" assistant_response += token\n",
" yield assistant_response \n",
"\n",
"# -------------------------------------------------------------------\n",
"# UI\n",
"# -------------------------------------------------------------------\n",
"with gr.Blocks() as demo:\n",
" model_choice = gr.Radio([\"OpenAI\", \"Gemini\"], value=\"OpenAI\", label=\"Model\")\n",
"\n",
" chat_ui = gr.ChatInterface(\n",
" fn=chat_fn,\n",
" additional_inputs=[model_choice],\n",
" title=\"CodeCopilot\",\n",
" description=\"An adaptive AI coding assistant that helps developers build and ship high-quality code.\"\n",
" )\n",
"\n",
"demo.launch()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "llms",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,370 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "60761989",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"from openai import OpenAI\n",
"import gradio as gr\n",
"import speech_recognition as sr\n",
"import json\n",
"from dotenv import load_dotenv"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e0b6610a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI API Key exists and begins sk-proj-\n",
"weather API Key exists\n"
]
}
],
"source": [
"# Initialization\n",
"\n",
"load_dotenv(override=True)\n",
"\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"weather_api_key = os.getenv('WEATHER_API_KEY')\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
"if weather_api_key:\n",
" print(\"weather API Key exists\")\n",
"else:\n",
" print(\"weather API Key not set\")\n",
" \n",
"MODEL = \"gpt-4o-mini\"\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "af9d2faf",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are a helpful assistant for weather. \"\n",
"system_message += \"You need to fetch the current, historical and forecast the weather data using weather api and provide the response\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2c5208d8",
"metadata": {},
"outputs": [],
"source": [
"def fetch_current_weather(location):\n",
" url = f\"http://api.weatherapi.com/v1/current.json?key={weather_api_key}&q={location}&aqi=yes\"\n",
" return requests.get(url).json()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8e6a12e5",
"metadata": {},
"outputs": [],
"source": [
"def fetch_forecast_weather(location, days=3):\n",
" url = f\"http://api.weatherapi.com/v1/forecast.json?key={weather_api_key}&q={location}&days={days}&aqi=yes&alerts=yes\"\n",
" return requests.get(url).json()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eafc468e",
"metadata": {},
"outputs": [],
"source": [
"def fetch_historical_weather(location, date):\n",
" url = f\"http://api.weatherapi.com/v1/history.json?key={weather_api_key}&q={location}&dt={date}&aqi=yes\"\n",
" return requests.get(url).json()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2851ed55",
"metadata": {},
"outputs": [],
"source": [
"# Weather function used as a tool by OpenAI\n",
"def get_weatherapi_data(location, mode=\"current\", date=None, forecast_days=3):\n",
" if mode == \"current\":\n",
" return fetch_current_weather(location)\n",
" elif mode == \"forecast\":\n",
" return fetch_forecast_weather(location, days=forecast_days)\n",
" elif mode == \"historical\":\n",
" if not date:\n",
" # Default: yesterday\n",
" date = (datetime.date.today() - datetime.timedelta(days=1)).strftime(\"%Y-%m-%d\")\n",
" return fetch_historical_weather(location, date)\n",
" else:\n",
" return {\"error\": \"Unknown mode.\"}"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "368176c2",
"metadata": {},
"outputs": [],
"source": [
"# Tool schema for OpenAI tool-calling\n",
"weatherapi_tool_schema = [\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"get_weatherapi_data\",\n",
" \"description\": \"Fetches current, forecast, or historical weather data from WeatherAPI.com for a given location.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"Name of the city, region, or coordinates.\"\n",
" },\n",
" \"mode\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"current\", \"forecast\", \"historical\"],\n",
" \"description\": \"Type of weather data required.\"\n",
" },\n",
" \"date\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"Date for historical data in YYYY-MM-DD format. Only needed if mode is 'historical'.\"\n",
" },\n",
" \"forecast_days\": {\n",
" \"type\": \"integer\",\n",
" \"description\": \"Number of forecast days (1-10). Only needed if mode is 'forecast'.\"\n",
" }\n",
" },\n",
" \"required\": [\"location\", \"mode\"]\n",
" }\n",
" }\n",
" }\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "bd9c4d38",
"metadata": {},
"outputs": [],
"source": [
"def audio_to_text(audio_filepath):\n",
" if audio_filepath is None or audio_filepath == \"\":\n",
" return \"\"\n",
" recognizer = sr.Recognizer()\n",
" try:\n",
" with sr.AudioFile(audio_filepath) as source:\n",
" audio = recognizer.record(source)\n",
" try:\n",
" transcript = recognizer.recognize_google(audio)\n",
" return transcript\n",
" except sr.UnknownValueError:\n",
" return \"\"\n",
" except sr.RequestError as e:\n",
" return f\"Speech recognition service error: {e}\"\n",
" except Exception as e:\n",
" return f\"Error opening audio file: {str(e)}\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "61c5de82",
"metadata": {},
"outputs": [],
"source": [
"def chat_agent(city, mode, date, forecast_days, audio=None):\n",
" user_query = city\n",
" if audio:\n",
" spoken_text = audio_to_text(audio)\n",
" print(\"Recognized speech:\", spoken_text)\n",
" if spoken_text and spoken_text.strip().lower() != \"flic en flac\":\n",
" user_query = spoken_text\n",
" else:\n",
" if not city.strip():\n",
" return \"Sorry, I could not recognize your speech. Please try again or type your city.\"\n",
"\n",
" if not user_query.strip():\n",
" return \"Please provide a location by text or speech.\"\n",
"\n",
" # Compose tool function arguments as the LLM would\n",
" args = {\n",
" \"location\": user_query,\n",
" \"mode\": mode\n",
" }\n",
" if mode == \"historical\" and date:\n",
" args[\"date\"] = date\n",
" if mode == \"forecast\":\n",
" try:\n",
" n_days = int(forecast_days)\n",
" except:\n",
" n_days = 3\n",
" args[\"forecast_days\"] = n_days\n",
"\n",
" openai.api_key = openai_api_key\n",
"\n",
" # LLM call for tool use\n",
" response = openai.chat.completions.create(\n",
" model=\"gpt-4-0613\",\n",
" messages=[{\"role\": \"user\", \"content\": f\"Get me {mode} weather for {user_query}\"+(f' on {date}' if date and mode==\"historical\" else \"\")+(f' for {forecast_days} days' if forecast_days and mode==\"forecast\" else \"\")}],\n",
" tools=weatherapi_tool_schema,\n",
" tool_choice={\"type\": \"function\", \"function\": {\"name\": \"get_weatherapi_data\", \"arguments\": json.dumps(args)}}\n",
" )\n",
" message = response.choices[0].message\n",
"\n",
" if hasattr(message, \"tool_calls\") and message.tool_calls:\n",
" tool_call = message.tool_calls[0]\n",
" args2 = json.loads(tool_call.function.arguments) # not really needed, already have args\n",
" location = args2.get(\"location\", user_query)\n",
" mode = args2.get(\"mode\", mode)\n",
" date = args2.get(\"date\", date)\n",
" forecast_days = args2.get(\"forecast_days\", forecast_days)\n",
" weather_data = get_weatherapi_data(location, mode, date, forecast_days)\n",
" tool_result = f\"Weather data (mode={mode}) for {location}:\\n{json.dumps(weather_data, indent=2)[:3000]}\"\n",
" followup = openai.chat.completions.create(\n",
" model=\"gpt-4-0613\",\n",
" messages=[\n",
" {\"role\": \"user\", \"content\": f\"Get me {mode} weather for {location}\"},\n",
" message,\n",
" {\n",
" \"role\": \"tool\",\n",
" \"tool_call_id\": tool_call.id,\n",
" \"content\": tool_result\n",
" }\n",
" ]\n",
" )\n",
" answer = followup.choices[0].message.content.strip()\n",
" return answer\n",
" else:\n",
" return getattr(message, \"content\", \"\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "44071389",
"metadata": {},
"outputs": [],
"source": [
"def update_date_visibility(mode):\n",
" return gr.update(visible=(mode==\"historical\"))\n",
"\n",
"def update_days_visibility(mode):\n",
" return gr.update(visible=(mode==\"forecast\"))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "618a5494",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7861\n",
"* To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recognized speech: Error opening audio file: FLAC conversion utility not available - consider installing the FLAC command line application by running `apt-get install flac` or your operating system's equivalent\n"
]
}
],
"source": [
"with gr.Blocks() as demo:\n",
" gr.Markdown(\"## Weather Chat Agent (Current, Historical, Forecast)\")\n",
"\n",
" with gr.Row():\n",
" city_input = gr.Textbox(label=\"City/Location\")\n",
" mode_input = gr.Dropdown(\n",
" [\"current\", \"historical\", \"forecast\"],\n",
" value=\"current\",\n",
" label=\"Weather Mode\")\n",
" with gr.Row():\n",
" date_input = gr.Textbox(label=\"Date for historical (YYYY-MM-DD)\", visible=False)\n",
" days_input = gr.Textbox(label=\"Forecast Days (for forecast)\", value=\"3\", visible=False)\n",
" audio_input = gr.Audio(type=\"filepath\", format=\"wav\", label=\"Or Speak your City/Location (optional)\")\n",
" output_box = gr.Textbox(label=\"Weather Info\", lines=8)\n",
" btn = gr.Button(\"Get Weather\")\n",
"\n",
" # Show/hide date and days inputs based on dropdown\n",
" mode_input.change(update_date_visibility, mode_input, date_input)\n",
" mode_input.change(update_days_visibility, mode_input, days_input)\n",
" btn.click(\n",
" chat_agent,\n",
" [city_input, mode_input, date_input, days_input, audio_input],\n",
" output_box\n",
" )\n",
"\n",
"demo.launch()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "llms",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}