Merge pull request #917 from msrashed2018/week6/salah
Bootcamp | week 6 | Salah | Add SmartFineTuner and SmartPricer classes for enhanced product pricing
This commit is contained in:
269
week6/community-contributions/salah/smart_fine_tuner.py
Normal file
269
week6/community-contributions/salah/smart_fine_tuner.py
Normal file
@@ -0,0 +1,269 @@
|
||||
import sys
|
||||
import os
|
||||
sys.path.append("../..")
|
||||
|
||||
import json
|
||||
import pickle
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from openai import OpenAI
|
||||
from dotenv import load_dotenv
|
||||
from huggingface_hub import login
|
||||
from smart_pricer import SmartPricer, ConfidenceAwareTester
|
||||
import re
|
||||
from typing import List, Dict, Tuple
|
||||
import time
|
||||
|
||||
load_dotenv(override=True)
|
||||
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')
|
||||
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN')
|
||||
|
||||
hf_token = os.environ['HF_TOKEN']
|
||||
login(hf_token, add_to_git_credential=True)
|
||||
|
||||
class SmartFineTuner:
|
||||
|
||||
def __init__(self, openai_api_key: str = None):
|
||||
self.client = OpenAI(api_key=openai_api_key or os.getenv('OPENAI_API_KEY'))
|
||||
self.fine_tuned_model_id = None
|
||||
|
||||
self.training_templates = [
|
||||
{
|
||||
"system": "You are a product pricing expert. Respond only with the price, no explanation.",
|
||||
"user": "Estimate the price of this product:\n\n{description}\n\nPrice: $",
|
||||
"weight": 0.4
|
||||
},
|
||||
{
|
||||
"system": "You are a retail pricing expert. Consider market positioning and consumer value.",
|
||||
"user": "What would this product sell for in the market?\n\n{description}\n\nMarket price: $",
|
||||
"weight": 0.3
|
||||
},
|
||||
{
|
||||
"system": "You analyze product features to determine fair pricing.",
|
||||
"user": "Based on the features and quality described, estimate the price:\n\n{description}\n\nEstimated price: $",
|
||||
"weight": 0.3
|
||||
}
|
||||
]
|
||||
|
||||
def prepare_enhanced_training_data(self, train_items: List, template_mix: bool = True) -> List[Dict]:
|
||||
training_data = []
|
||||
|
||||
for item in train_items:
|
||||
description = self._get_clean_description(item)
|
||||
|
||||
if len(description.strip()) < 20:
|
||||
continue
|
||||
|
||||
if hasattr(item, 'price'):
|
||||
price = item.price
|
||||
else:
|
||||
price = item.get('price', 0)
|
||||
|
||||
if price <= 0:
|
||||
continue
|
||||
|
||||
templates_to_use = self.training_templates if template_mix else [self.training_templates[0]]
|
||||
|
||||
for template in templates_to_use:
|
||||
if template_mix and np.random.random() > template['weight']:
|
||||
continue
|
||||
|
||||
user_prompt = template['user'].format(description=description)
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": template['system']},
|
||||
{"role": "user", "content": user_prompt},
|
||||
{"role": "assistant", "content": f"{price:.2f}"}
|
||||
]
|
||||
|
||||
training_data.append({"messages": messages})
|
||||
|
||||
return training_data
|
||||
|
||||
def _get_clean_description(self, item) -> str:
|
||||
if hasattr(item, 'test_prompt'):
|
||||
prompt = item.test_prompt()
|
||||
clean = prompt.replace(" to the nearest dollar", "")
|
||||
clean = clean.replace("\n\nPrice is $", "")
|
||||
clean = re.sub(r'\$\d+\.?\d*', '', clean)
|
||||
clean = re.sub(r'\d+\.?\d*\s*dollars?', '', clean)
|
||||
return clean.strip()
|
||||
else:
|
||||
parts = []
|
||||
if 'title' in item and item['title']:
|
||||
parts.append(f"Title: {item['title']}")
|
||||
if 'description' in item and item['description']:
|
||||
parts.append(f"Description: {item['description']}")
|
||||
if 'features' in item and item['features']:
|
||||
parts.append(f"Features: {item['features']}")
|
||||
|
||||
return '\n'.join(parts)
|
||||
|
||||
def create_training_files(self, train_items: List, val_items: List,
|
||||
enhanced: bool = True) -> Tuple[str, str]:
|
||||
train_data = self.prepare_enhanced_training_data(train_items, template_mix=enhanced)
|
||||
val_data = self.prepare_enhanced_training_data(val_items, template_mix=False)
|
||||
|
||||
print(f"Prepared {len(train_data)} training examples")
|
||||
print(f"Prepared {len(val_data)} validation examples")
|
||||
|
||||
train_file = "smart_pricer_train.jsonl"
|
||||
val_file = "smart_pricer_validation.jsonl"
|
||||
|
||||
with open(train_file, 'w') as f:
|
||||
for example in train_data:
|
||||
f.write(json.dumps(example) + '\n')
|
||||
|
||||
with open(val_file, 'w') as f:
|
||||
for example in val_data:
|
||||
f.write(json.dumps(example) + '\n')
|
||||
|
||||
return train_file, val_file
|
||||
|
||||
def start_fine_tuning(self, train_file: str, val_file: str,
|
||||
model: str = "gpt-4o-mini-2024-07-18",
|
||||
epochs: int = 1) -> str:
|
||||
print(f"Starting fine-tuning with enhanced training data...")
|
||||
|
||||
with open(train_file, 'rb') as f:
|
||||
train_file_obj = self.client.files.create(file=f, purpose="fine-tune")
|
||||
|
||||
with open(val_file, 'rb') as f:
|
||||
val_file_obj = self.client.files.create(file=f, purpose="fine-tune")
|
||||
|
||||
print(f"Uploaded training file: {train_file_obj.id}")
|
||||
print(f"Uploaded validation file: {val_file_obj.id}")
|
||||
|
||||
job = self.client.fine_tuning.jobs.create(
|
||||
training_file=train_file_obj.id,
|
||||
validation_file=val_file_obj.id,
|
||||
model=model,
|
||||
hyperparameters={"n_epochs": epochs},
|
||||
suffix="smart_pricer"
|
||||
)
|
||||
|
||||
self.fine_tuned_model_id = job.id
|
||||
print(f"Fine-tuning job created: {job.id}")
|
||||
|
||||
return job.id
|
||||
|
||||
def check_job_status(self, job_id: str) -> Dict:
|
||||
job = self.client.fine_tuning.jobs.retrieve(job_id)
|
||||
return {
|
||||
'status': job.status,
|
||||
'model': job.fine_tuned_model,
|
||||
'created_at': job.created_at,
|
||||
'finished_at': job.finished_at
|
||||
}
|
||||
|
||||
def evaluate_fine_tuned_model(self, test_data: List, job_id: str) -> Dict:
|
||||
job_info = self.check_job_status(job_id)
|
||||
|
||||
if job_info['status'] != 'succeeded':
|
||||
print(f"Job not completed yet. Status: {job_info['status']}")
|
||||
return {}
|
||||
|
||||
fine_tuned_model = job_info['model']
|
||||
print(f"Evaluating fine-tuned model: {fine_tuned_model}")
|
||||
|
||||
pricer = SmartPricer(fine_tuned_model=fine_tuned_model)
|
||||
|
||||
tester = ConfidenceAwareTester(
|
||||
pricer,
|
||||
test_data[:100],
|
||||
title=f"Fine-tuned Smart Pricer ({fine_tuned_model})",
|
||||
size=100
|
||||
)
|
||||
|
||||
results = tester.run_enhanced_test()
|
||||
|
||||
if results:
|
||||
avg_error = np.mean([r['error'] for r in results])
|
||||
avg_confidence = np.mean([r['confidence'] for r in results])
|
||||
high_conf_results = [r for r in results if r['confidence'] > 0.7]
|
||||
high_conf_error = np.mean([r['error'] for r in high_conf_results]) if high_conf_results else float('inf')
|
||||
|
||||
summary = {
|
||||
'model_id': fine_tuned_model,
|
||||
'total_predictions': len(results),
|
||||
'average_error': avg_error,
|
||||
'average_confidence': avg_confidence,
|
||||
'high_confidence_count': len(high_conf_results),
|
||||
'high_confidence_error': high_conf_error,
|
||||
'job_id': job_id
|
||||
}
|
||||
|
||||
print(f"\nEVALUATION SUMMARY:")
|
||||
print(f"Average Error: ${avg_error:.2f}")
|
||||
print(f"Average Confidence: {avg_confidence:.2f}")
|
||||
print(f"High Confidence Predictions: {len(high_conf_results)}")
|
||||
print(f"High Confidence Error: ${high_conf_error:.2f}")
|
||||
|
||||
return summary
|
||||
|
||||
return {}
|
||||
|
||||
def quick_fine_tune_demo(train_size: int = 200, val_size: int = 50):
|
||||
print("Smart Pricer Fine-Tuning Demo")
|
||||
print("=" * 50)
|
||||
|
||||
try:
|
||||
with open('train.pkl', 'rb') as file:
|
||||
train_data = pickle.load(file)
|
||||
with open('test.pkl', 'rb') as file:
|
||||
test_data = pickle.load(file)
|
||||
print(f"Loaded training data: {len(train_data)} items")
|
||||
print(f"Loaded test data: {len(test_data)} items")
|
||||
except FileNotFoundError:
|
||||
print("Training data not found. Make sure train.pkl and test.pkl are in current directory.")
|
||||
return
|
||||
|
||||
train_items = train_data[:train_size]
|
||||
val_items = train_data[train_size:train_size + val_size]
|
||||
|
||||
print(f"Using {len(train_items)} training items, {len(val_items)} validation items")
|
||||
|
||||
fine_tuner = SmartFineTuner()
|
||||
|
||||
train_file, val_file = fine_tuner.create_training_files(
|
||||
train_items, val_items, enhanced=True
|
||||
)
|
||||
|
||||
print(f"Created training files: {train_file}, {val_file}")
|
||||
|
||||
print(f"\nTo start fine-tuning, uncomment the following lines:")
|
||||
print(f"job_id = fine_tuner.start_fine_tuning('{train_file}', '{val_file}')")
|
||||
print(f"# Wait for job to complete...")
|
||||
print(f"# results = fine_tuner.evaluate_fine_tuned_model(test_data, job_id)")
|
||||
|
||||
print(f"\nDemo with base model (no fine-tuning):")
|
||||
pricer = SmartPricer()
|
||||
tester = ConfidenceAwareTester(pricer, test_data[:25], size=25)
|
||||
tester.run_enhanced_test()
|
||||
|
||||
def main():
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='Smart Pricer Fine-Tuning')
|
||||
parser.add_argument('--demo', action='store_true', help='Run demo mode')
|
||||
parser.add_argument('--train-size', type=int, default=200, help='Training set size')
|
||||
parser.add_argument('--val-size', type=int, default=50, help='Validation set size')
|
||||
parser.add_argument('--evaluate', type=str, help='Evaluate existing model by job ID')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.demo:
|
||||
quick_fine_tune_demo(args.train_size, args.val_size)
|
||||
elif args.evaluate:
|
||||
try:
|
||||
with open('test.pkl', 'rb') as file:
|
||||
test_data = pickle.load(file)
|
||||
fine_tuner = SmartFineTuner()
|
||||
fine_tuner.evaluate_fine_tuned_model(test_data, args.evaluate)
|
||||
except FileNotFoundError:
|
||||
print("Test data not found. Make sure test.pkl is in current directory.")
|
||||
else:
|
||||
print("Use --demo to run demo or --evaluate <job_id> to evaluate existing model")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
384
week6/community-contributions/salah/smart_pricer.py
Normal file
384
week6/community-contributions/salah/smart_pricer.py
Normal file
@@ -0,0 +1,384 @@
|
||||
import sys
|
||||
import os
|
||||
sys.path.append("../..")
|
||||
|
||||
import pickle
|
||||
import json
|
||||
import re
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from openai import OpenAI
|
||||
from dotenv import load_dotenv
|
||||
from huggingface_hub import login
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
from typing import List, Tuple, Dict
|
||||
from dataclasses import dataclass
|
||||
from collections import defaultdict
|
||||
import time
|
||||
|
||||
load_dotenv(override=True)
|
||||
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')
|
||||
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN')
|
||||
|
||||
hf_token = os.environ['HF_TOKEN']
|
||||
login(hf_token, add_to_git_credential=True)
|
||||
|
||||
from items import Item
|
||||
from testing import Tester
|
||||
|
||||
GREEN = "\033[92m"
|
||||
YELLOW = "\033[93m"
|
||||
RED = "\033[91m"
|
||||
BLUE = "\033[94m"
|
||||
RESET = "\033[0m"
|
||||
COLOR_MAP = {"red": RED, "orange": YELLOW, "green": GREEN, "blue": BLUE}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConfidentPrediction:
|
||||
predicted_price: float
|
||||
confidence_score: float
|
||||
price_range: Tuple[float, float]
|
||||
prediction_details: Dict
|
||||
risk_level: str
|
||||
|
||||
|
||||
class SmartPricer:
|
||||
|
||||
def __init__(self, openai_api_key: str = None, fine_tuned_model: str = None):
|
||||
self.client = OpenAI(api_key=openai_api_key or os.getenv('OPENAI_API_KEY'))
|
||||
self.fine_tuned_model = fine_tuned_model or "gpt-4o-mini-2024-07-18"
|
||||
|
||||
self.prompt_strategies = {
|
||||
"direct": self._create_direct_prompt,
|
||||
"comparative": self._create_comparative_prompt,
|
||||
"detailed": self._create_detailed_prompt,
|
||||
"market_based": self._create_market_prompt
|
||||
}
|
||||
|
||||
self.price_patterns = [
|
||||
r'\$?(\d+\.?\d{0,2})',
|
||||
r'(\d+\.?\d{0,2})\s*dollars?',
|
||||
r'price.*?(\d+\.?\d{0,2})',
|
||||
r'(\d+\.?\d{0,2})\s*USD'
|
||||
]
|
||||
|
||||
def _create_direct_prompt(self, item) -> str:
|
||||
description = self._get_clean_description(item)
|
||||
return f"""Estimate the price of this product. Respond only with the price number.
|
||||
|
||||
Product: {description}
|
||||
|
||||
Price: $"""
|
||||
|
||||
def _create_comparative_prompt(self, item) -> str:
|
||||
description = self._get_clean_description(item)
|
||||
return f"""You are pricing this product compared to similar items in the market.
|
||||
Consider quality, features, and typical market prices.
|
||||
|
||||
Product: {description}
|
||||
|
||||
Based on market comparison, the price should be: $"""
|
||||
|
||||
def _create_detailed_prompt(self, item) -> str:
|
||||
description = self._get_clean_description(item)
|
||||
return f"""Analyze this product and estimate its price by considering:
|
||||
1. Materials and build quality
|
||||
2. Brand positioning
|
||||
3. Features and functionality
|
||||
4. Target market
|
||||
|
||||
Product: {description}
|
||||
|
||||
Estimated price: $"""
|
||||
|
||||
def _create_market_prompt(self, item) -> str:
|
||||
description = self._get_clean_description(item)
|
||||
return f"""As a retail pricing expert, what would this product sell for?
|
||||
Consider production costs, markup, and consumer willingness to pay.
|
||||
|
||||
Product: {description}
|
||||
|
||||
Retail price: $"""
|
||||
|
||||
def _get_clean_description(self, item) -> str:
|
||||
if hasattr(item, 'test_prompt'):
|
||||
prompt = item.test_prompt()
|
||||
clean = prompt.replace(" to the nearest dollar", "")
|
||||
clean = clean.replace("\n\nPrice is $", "")
|
||||
return clean.strip()
|
||||
else:
|
||||
parts = []
|
||||
if 'title' in item:
|
||||
parts.append(f"Title: {item['title']}")
|
||||
if 'description' in item:
|
||||
parts.append(f"Description: {item['description']}")
|
||||
if 'features' in item:
|
||||
parts.append(f"Features: {item['features']}")
|
||||
return '\n'.join(parts)
|
||||
|
||||
def _extract_price(self, response: str) -> float:
|
||||
if not response:
|
||||
return 0.0
|
||||
|
||||
clean_response = response.replace('$', '').replace(',', '').strip()
|
||||
|
||||
try:
|
||||
numbers = re.findall(r'\d+\.?\d{0,2}', clean_response)
|
||||
if numbers:
|
||||
return float(numbers[0])
|
||||
except:
|
||||
pass
|
||||
|
||||
return 0.0
|
||||
|
||||
def _get_single_prediction(self, item, strategy_name: str) -> float:
|
||||
try:
|
||||
prompt_func = self.prompt_strategies[strategy_name]
|
||||
prompt = prompt_func(item)
|
||||
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.fine_tuned_model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a product pricing expert. Respond only with a price number."},
|
||||
{"role": "user", "content": prompt}
|
||||
],
|
||||
max_tokens=10,
|
||||
temperature=0.1
|
||||
)
|
||||
|
||||
price = self._extract_price(response.choices[0].message.content)
|
||||
return max(0.0, price)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error in {strategy_name} prediction: {e}")
|
||||
return 0.0
|
||||
|
||||
def predict_with_confidence(self, item) -> ConfidentPrediction:
|
||||
predictions = {}
|
||||
for strategy_name in self.prompt_strategies:
|
||||
pred = self._get_single_prediction(item, strategy_name)
|
||||
if pred > 0:
|
||||
predictions[strategy_name] = pred
|
||||
|
||||
if not predictions:
|
||||
return ConfidentPrediction(
|
||||
predicted_price=50.0,
|
||||
confidence_score=0.1,
|
||||
price_range=(10.0, 100.0),
|
||||
prediction_details={"fallback": 50.0},
|
||||
risk_level="high"
|
||||
)
|
||||
|
||||
prices = list(predictions.values())
|
||||
mean_price = np.mean(prices)
|
||||
std_price = np.std(prices)
|
||||
min_price = min(prices)
|
||||
max_price = max(prices)
|
||||
|
||||
if len(prices) == 1:
|
||||
confidence = 0.5
|
||||
else:
|
||||
coefficient_of_variation = std_price / mean_price if mean_price > 0 else 1.0
|
||||
confidence = max(0.1, min(1.0, 1.0 - coefficient_of_variation))
|
||||
|
||||
if confidence > 0.8:
|
||||
range_factor = 0.1
|
||||
elif confidence > 0.5:
|
||||
range_factor = 0.2
|
||||
else:
|
||||
range_factor = 0.4
|
||||
|
||||
price_range = (
|
||||
max(0.5, mean_price * (1 - range_factor)),
|
||||
mean_price * (1 + range_factor)
|
||||
)
|
||||
|
||||
if confidence > 0.7:
|
||||
risk_level = "low"
|
||||
elif confidence > 0.4:
|
||||
risk_level = "medium"
|
||||
else:
|
||||
risk_level = "high"
|
||||
|
||||
return ConfidentPrediction(
|
||||
predicted_price=mean_price,
|
||||
confidence_score=confidence,
|
||||
price_range=price_range,
|
||||
prediction_details=predictions,
|
||||
risk_level=risk_level
|
||||
)
|
||||
|
||||
def simple_predict(self, item) -> float:
|
||||
confident_pred = self.predict_with_confidence(item)
|
||||
return confident_pred.predicted_price
|
||||
|
||||
|
||||
class ConfidenceAwareTester:
|
||||
|
||||
def __init__(self, predictor, data, title="Smart Pricer with Confidence", size=250):
|
||||
self.predictor = predictor
|
||||
self.data = data
|
||||
self.title = title
|
||||
self.size = size
|
||||
self.results = []
|
||||
self.confidence_stats = defaultdict(list)
|
||||
|
||||
def color_for_confidence(self, confidence: float) -> str:
|
||||
if confidence > 0.7:
|
||||
return "blue"
|
||||
elif confidence > 0.4:
|
||||
return "green"
|
||||
else:
|
||||
return "orange"
|
||||
|
||||
def run_enhanced_test(self):
|
||||
print(f"\n{self.title}")
|
||||
print("=" * 60)
|
||||
|
||||
for i in range(min(self.size, len(self.data))):
|
||||
item = self.data[i]
|
||||
|
||||
if hasattr(self.predictor, 'predict_with_confidence'):
|
||||
confident_pred = self.predictor.predict_with_confidence(item)
|
||||
guess = confident_pred.predicted_price
|
||||
confidence = confident_pred.confidence_score
|
||||
price_range = confident_pred.price_range
|
||||
risk_level = confident_pred.risk_level
|
||||
else:
|
||||
guess = self.predictor(item)
|
||||
confidence = 0.5
|
||||
price_range = (guess * 0.8, guess * 1.2)
|
||||
risk_level = "medium"
|
||||
|
||||
if hasattr(item, 'price'):
|
||||
truth = item.price
|
||||
title = item.title[:40] + "..." if len(item.title) > 40 else item.title
|
||||
else:
|
||||
truth = item.get('price', 0)
|
||||
title = item.get('title', 'Unknown')[:40] + "..."
|
||||
|
||||
error = abs(guess - truth)
|
||||
in_range = price_range[0] <= truth <= price_range[1]
|
||||
|
||||
self.results.append({
|
||||
'guess': guess,
|
||||
'truth': truth,
|
||||
'error': error,
|
||||
'confidence': confidence,
|
||||
'in_range': in_range,
|
||||
'risk_level': risk_level,
|
||||
'title': title
|
||||
})
|
||||
|
||||
self.confidence_stats[risk_level].append(error)
|
||||
|
||||
color = self.color_for_confidence(confidence)
|
||||
range_indicator = "+" if in_range else "-"
|
||||
|
||||
print(f"{COLOR_MAP[color]}{i+1:3d}: ${guess:6.2f} ({confidence*100:4.1f}%) "
|
||||
f"vs ${truth:6.2f} | Error: ${error:5.2f} | {range_indicator} | {title}{RESET}")
|
||||
|
||||
self._print_confidence_summary()
|
||||
self._create_confidence_visualization()
|
||||
|
||||
def _print_confidence_summary(self):
|
||||
if not self.results:
|
||||
return
|
||||
|
||||
print(f"\nPERFORMANCE SUMMARY")
|
||||
print("=" * 60)
|
||||
|
||||
total_predictions = len(self.results)
|
||||
avg_confidence = np.mean([r['confidence'] for r in self.results])
|
||||
avg_error = np.mean([r['error'] for r in self.results])
|
||||
range_accuracy = np.mean([r['in_range'] for r in self.results]) * 100
|
||||
|
||||
print(f"Total Predictions: {total_predictions}")
|
||||
print(f"Average Confidence: {avg_confidence:.2f}")
|
||||
print(f"Average Error: ${avg_error:.2f}")
|
||||
print(f"Range Accuracy: {range_accuracy:.1f}%")
|
||||
|
||||
print(f"\nBY RISK LEVEL:")
|
||||
for risk_level in ['low', 'medium', 'high']:
|
||||
if risk_level in self.confidence_stats:
|
||||
errors = self.confidence_stats[risk_level]
|
||||
count = len(errors)
|
||||
avg_error = np.mean(errors)
|
||||
print(f" {risk_level.upper():6} risk: {count:3d} predictions, ${avg_error:6.2f} avg error")
|
||||
|
||||
high_conf_results = [r for r in self.results if r['confidence'] > 0.7]
|
||||
if high_conf_results:
|
||||
high_conf_error = np.mean([r['error'] for r in high_conf_results])
|
||||
high_conf_accuracy = np.mean([r['in_range'] for r in high_conf_results]) * 100
|
||||
print(f"\nHIGH CONFIDENCE PREDICTIONS (>0.7):")
|
||||
print(f" Count: {len(high_conf_results)}")
|
||||
print(f" Average Error: ${high_conf_error:.2f}")
|
||||
print(f" Range Accuracy: {high_conf_accuracy:.1f}%")
|
||||
|
||||
def _create_confidence_visualization(self):
|
||||
if not self.results:
|
||||
return
|
||||
|
||||
confidences = [r['confidence'] for r in self.results]
|
||||
errors = [r['error'] for r in self.results]
|
||||
|
||||
plt.figure(figsize=(12, 5))
|
||||
|
||||
plt.subplot(1, 2, 1)
|
||||
plt.scatter(confidences, errors, alpha=0.6, c=confidences, cmap='RdYlBu')
|
||||
plt.xlabel('Confidence Score')
|
||||
plt.ylabel('Prediction Error ($)')
|
||||
plt.title('Confidence vs Prediction Error')
|
||||
plt.colorbar(label='Confidence')
|
||||
|
||||
plt.subplot(1, 2, 2)
|
||||
plt.hist(confidences, bins=20, alpha=0.7, color='skyblue', edgecolor='black')
|
||||
plt.xlabel('Confidence Score')
|
||||
plt.ylabel('Count')
|
||||
plt.title('Distribution of Confidence Scores')
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
def create_smart_pricer_function(fine_tuned_model_id: str = None):
|
||||
pricer = SmartPricer(fine_tuned_model=fine_tuned_model_id)
|
||||
return pricer.simple_predict
|
||||
|
||||
|
||||
def test_smart_pricer_with_confidence(test_data, fine_tuned_model_id: str = None):
|
||||
pricer = SmartPricer(fine_tuned_model=fine_tuned_model_id)
|
||||
tester = ConfidenceAwareTester(pricer, test_data)
|
||||
tester.run_enhanced_test()
|
||||
return tester.results
|
||||
|
||||
|
||||
def main():
|
||||
print("Smart Product Pricer with Confidence Scoring")
|
||||
print("=" * 60)
|
||||
|
||||
try:
|
||||
with open('test.pkl', 'rb') as file:
|
||||
test_data = pickle.load(file)
|
||||
print(f"Loaded {len(test_data)} test items")
|
||||
except FileNotFoundError:
|
||||
print("Test data not found. Make sure test.pkl is in current directory.")
|
||||
return
|
||||
|
||||
pricer = SmartPricer()
|
||||
|
||||
print(f"\nTesting with confidence analysis (50 items)...")
|
||||
test_data_sample = test_data[:50]
|
||||
|
||||
tester = ConfidenceAwareTester(pricer, test_data_sample, size=50)
|
||||
tester.run_enhanced_test()
|
||||
|
||||
print(f"\nComparison with traditional testing:")
|
||||
simple_pricer = create_smart_pricer_function()
|
||||
Tester.test(simple_pricer, test_data_sample[:25])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user